def raw_lfr2xraw(self, lfp_in, calibration_in=None, dir_out=None, threads=None, i=0): """TNT process: raw LFR to xraw LFR :param lfp_in: `str`, source LFP file :param calibration_in: `str`, calibration directory :param dir_out: `str`, directory out :param threads: `int`, number of processing threads to use :param i: `int`, iteration during multi file-out process """ calibration_in = self._set_calibration_in(lfp_in, calibration_in) basedir, name, ext = self._split_path(lfp_in) dir_out = self._check_dir(dir_out) if dir_out else basedir xraw_out = self.xraw_out(dir_out, name) xraw_out = utils.sanitize_path(xraw_out) self._status("xraw LFR", "raw", src=lfp_in, dest=xraw_out, i=i) tnt = Tnt(verbose=self.verbose) tnt.threads(threads) tnt.lfp_in(lfp_in) tnt.lfp_out(xraw_out) tnt.lfr2xraw() tnt.calibration_in(calibration_in) self._execute(tnt)
def warp_unpack(self, lfp_in, depthrep=None, dir_out=None, height=None, imagerep=None, threads=None, width=None, i=0): """TNT process: warp LFP to unpacked warp LFP :param lfp_in: `str`, source LFP file :param depthrep: `str`, depth map representation :param dir_out: `str`, directory out :param height: `int`, resolution height (in pixels) :param imagerep: `str`, image representation for processed LFP :param threads: `int`, number of processing threads to use :param width: `int`, resolution width (in pixels) :param i: `int`, iteration during multi file-out process """ depthrep = depthrep or self._db['depthrep_warp_unpack'] imagerep = imagerep or self._db['imagerep_warp_unpack'] height, width = self._set_height_width(lfp_in, height, width) basedir, name, ext = self._split_path(lfp_in) dir_out = self._check_dir(dir_out) if dir_out else basedir lfp_out = self.lfp_out_unpacked(dir_out, name) self._status("unpacked LFP", "warp", src=lfp_in, dest=dir_out, i=i) tnt = Tnt(verbose=self.verbose) tnt.threads(threads) tnt.lfp_in(lfp_in) tnt.dir_out(dir_out) tnt.lfp_out(lfp_out) tnt.transcode() tnt.unpack() tnt.imagerep(imagerep) tnt.depthrep(depthrep) tnt.height(height) tnt.width(width) self._execute(tnt) if os.path.exists(lfp_out): self.recipe_out(lfp_out, threads=threads, i=i) self.warp_depth_map_json_out(lfp_out, i=i)
def warp_transcode(self, lfp_in, lfp_out=None, threads=None, i=0): """TNT process: warp LFP to warp LFP :param lfp_in: `str`, source LFP file :param lfp_out: `str`, destination LFP file :param threads: `int`, number of processing threads to use :param i: `int`, iteration during multi file-out process """ lfp_out = lfp_out or lfp_in self._status("warp LFP", "warp", src=lfp_in, dest=lfp_out, i=i) tnt = Tnt(verbose=self.verbose) tnt.threads(threads) tnt.lfp_in(lfp_in) tnt.lfp_out(lfp_out) tnt.transcode() self._execute(tnt)
def raw_raw2lfp(self, raw_in, dir_out=None, threads=None, i=0): """TNT process: package RAW and corresponding TXT :param raw_in: `str`, source RAW file :param dir_out: `str`, directory out :param threads: `int`, number of processing threads to use :param i: `int`, iteration during multi file-out process """ basedir, name, ext = self._split_path(raw_in) dir_out = self._check_dir(dir_out) if dir_out else basedir lfp_out = self.lfr_out(dir_out, name) lfp_out = utils.sanitize_path(lfp_out) self._status("raw", "unpackaged RAW", src=raw_in, dest=lfp_out, i=i) tnt = Tnt(verbose=self.verbose) tnt.threads(threads) tnt.raw_in(raw_in) tnt.lfp_out(lfp_out) tnt.raw2lfp() self._execute(tnt)
def raw_unpack(self, lfp_in, calibration_in=None, depth_in=None, depthrep=None, dir_out=None, height=None, imagerep=None, orientation=None, perspective_u=None, perspective_v=None, recipe_in=None, threads=None, width=None, i=0): """TNT process: raw LFR to image out :param lfp_in: `str`, source LFP file :param calibration_in: `str`, calibration directory :param depth_in: `str`, depth map input file :param depthrep: `str`, depth map representation :param dir_out: `str`, directory out :param height: `int`, resolution height (in pixels) :param imagerep: `str`, image representation for processed LFP :param orientation: `int`, image orientation :param perspective_u: `float`, perspective u coordinate :param perspective_v: `float`, perspective v coordinate :param recipe_in: `str`, input recipe file :param threads: `int`, number of processing threads to use :param width: `int`, resolution width (in pixels) :param i: `int`, iteration during multi file-out process """ calibration_in = self._set_calibration_in(lfp_in, calibration_in) depthrep = depthrep or self._db['depthrep_raw_unpack'] imagerep = imagerep or self._db['imagerep_raw_unpack'] height, width = self._set_height_width(lfp_in, height, width) basedir, name, ext = self._split_path(lfp_in) recipe_in = self.set_recipe_in(recipe_in, i) parent_dir = self._check_dir(dir_out) if dir_out else basedir dir_out = os.path.join(parent_dir, name) dir_out = self._check_dir(dir_out, sane=True) lfp_out = self.lfp_out_unpacked(dir_out, name) self._status("unpacked warp LFP", "raw", src=lfp_in, dest=dir_out, i=i) tnt = Tnt(verbose=self.verbose) tnt.threads(threads) tnt.lfp_in(lfp_in) tnt.dir_out(dir_out) tnt.lfp_out(lfp_out) tnt.unpack() tnt.imagerep(imagerep) tnt.depthrep(depthrep) tnt.height(height) tnt.width(width) tnt.orientation(orientation) tnt.depth_in(depth_in) tnt.recipe_in(recipe_in) tnt.calibration_in(calibration_in) tnt.perspective_u(perspective_u) tnt.perspective_v(perspective_v) self._execute(tnt) if os.path.exists(lfp_out): self.recipe_out(lfp_out, threads=threads, i=i) self.warp_depth_map_json_out(lfp_out, i=i)