""" import numpy as np from numpy import array import lqramsey # == Parameters == # beta = 1 / 1.05 rho, mg = .7, .35 A = np.identity(2) A[0, :] = rho, mg * (1 - rho) C = np.zeros((2, 1)) C[0, 0] = np.sqrt(1 - rho**2) * mg / 10 Sg = array((1, 0)).reshape(1, 2) Sd = array((0, 0)).reshape(1, 2) Sb = array((0, 2.135)).reshape(1, 2) Ss = array((0, 0)).reshape(1, 2) economy = lqramsey.Economy(beta=beta, Sg=Sg, Sd=Sd, Sb=Sb, Ss=Ss, discrete=False, proc=(A, C)) T = 50 path = lqramsey.compute_paths(T, economy) lqramsey.gen_fig_1(path)
import lqramsey # == Parameters == # beta = 1 / 1.05 P = array([[0.8, 0.2, 0.0], [0.0, 0.5, 0.5], [0.0, 0.0, 1.0]]) # == Possible states of the world == # # Each column is a state of the world. The rows are [g d b s 1] x_vals = array([[0.5, 0.5, 0.25], [0.0, 0.0, 0.0], [2.2, 2.2, 2.2], [0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]) Sg = array((1, 0, 0, 0, 0)).reshape(1, 5) Sd = array((0, 1, 0, 0, 0)).reshape(1, 5) Sb = array((0, 0, 1, 0, 0)).reshape(1, 5) Ss = array((0, 0, 0, 1, 0)).reshape(1, 5) economy = lqramsey.Economy(beta=beta, Sg=Sg, Sd=Sd, Sb=Sb, Ss=Ss, discrete=True, proc=(P, x_vals)) T = 15 path = lqramsey.compute_paths(T, economy) lqramsey.gen_fig_1(path)