def test_linear_sum_assignment_input_validation(): assert_raises(ValueError, linear_sum_assignment, [1, 2, 3]) C = [[1, 2, 3], [4, 5, 6]] assert_array_equal(linear_sum_assignment(C), linear_sum_assignment(np.asarray(C))) assert_array_equal(linear_sum_assignment(C), linear_sum_assignment(np.matrix(C)))
def assignment_score_slow(cm, normalize=True, rpad=False, cpad=False): """Calls Python/Numpy implementation of the Hungarian method Testing version (uses SciPy's implementation) """ cost_matrix = -cm.to_array(rpad=rpad, cpad=cpad) ris, cis = linear_sum_assignment(cost_matrix) score = -cost_matrix[ris, cis].sum() if normalize: score = _div(score, cm.grand_total) return score
def test_linear_sum_assignment(): for cost_matrix, expected_cost in [ # Square ([[400, 150, 400], [400, 450, 600], [300, 225, 300]], [150, 400, 300]), # Rectangular variant ([[400, 150, 400, 1], [400, 450, 600, 2], [300, 225, 300, 3]], [150, 2, 300]), # Square ([[10, 10, 8], [9, 8, 1], [9, 7, 4]], [10, 1, 7]), # Rectangular variant ([[10, 10, 8, 11], [9, 8, 1, 1], [9, 7, 4, 10]], [10, 1, 4]), # n == 2, m == 0 matrix ([[], []], []), ]: cost_matrix = np.array(cost_matrix) row_ind, col_ind = linear_sum_assignment(cost_matrix) assert_array_equal(row_ind, np.sort(row_ind)) assert_array_equal(expected_cost, cost_matrix[row_ind, col_ind]) cost_matrix = cost_matrix.T row_ind, col_ind = linear_sum_assignment(cost_matrix) assert_array_equal(row_ind, np.sort(row_ind)) assert_array_equal(np.sort(expected_cost), np.sort(cost_matrix[row_ind, col_ind]))