def test_twoway_confusion_phi(): cm = ConfusionMatrix2.from_ccw(116, 21, 18, 21) assert_almost_equal(cm.matthews_corr(), 0.31, 2) assert_almost_equal(cm.yule_q(), 0.6512, 4) assert_almost_equal(cm.DOR(), 4.7347, 4) cm = ConfusionMatrix2.from_ccw(35, 60, 41, 9) assert_almost_equal(cm.chisq_score(), 5.50, 2)
def test_0000(): m = (0, 0, 0, 0) cm = ConfusionMatrix2.from_ccw(*m) assert_almost_equal(cm.chisq_score(), 0.0, 4) assert_almost_equal(cm.g_score(), 0.0, 4) assert_true(np.isnan(cm.dice_coeff())) assert_true(np.isnan(cm.ochiai_coeff())) assert_true(np.isnan(cm.ochiai_coeff_adj())) assert_true(np.isnan(cm.matthews_corr())) assert_true(np.isnan(cm.mp_corr())) assert_true(np.isnan(cm.kappa())) assert_true(np.isnan(cm.loevinger_coeff())) assert_true(np.isnan(cm.cole_coeff())) assert_true(np.isnan(cm.yule_q())) assert_true(np.isnan(cm.yule_y())) assert_true(np.isnan(cm.informedness())) assert_true(np.isnan(cm.markedness()))
def test_1110(): m = (1, 1, 1, 0) cm = ConfusionMatrix2.from_ccw(*m) assert_almost_equal(cm.chisq_score(), 0.75, 4) assert_almost_equal(cm.g_score(), 1.0465, 4) assert_almost_equal(cm.dice_coeff(), 0.6667, 4) assert_almost_equal(cm.ochiai_coeff(), 0.7071, 4) assert_almost_equal(cm.ochiai_coeff_adj(), 0.4459, 4) assert_almost_equal(cm.matthews_corr(), 0.5, 4) assert_almost_equal(cm.mp_corr(), 0.5, 4) assert_almost_equal(cm.kappa(), 0.4, 4) assert_almost_equal(cm.loevinger_coeff(), 1.0, 4) assert_almost_equal(cm.cole_coeff(), 1.0, 4) assert_almost_equal(cm.yule_q(), 1.0, 4) assert_almost_equal(cm.yule_y(), 1.0, 4) assert_almost_equal(cm.informedness(), 0.5, 4) assert_almost_equal(cm.markedness(), 0.5, 4)
def test_0101(): m = (0, 1, 0, 1) cm = ConfusionMatrix2.from_ccw(*m) assert_almost_equal(cm.chisq_score(), 2.0, 4) assert_almost_equal(cm.g_score(), 2.7726, 4) assert_almost_equal(cm.dice_coeff(), 0.0, 4) assert_almost_equal(cm.ochiai_coeff(), 0.0, 4) assert_almost_equal(cm.ochiai_coeff_adj(), -1.0, 4) assert_almost_equal(cm.matthews_corr(), -1.0, 4) assert_almost_equal(cm.mp_corr(), -1.0, 4) assert_almost_equal(cm.kappa(), -1.0, 4) assert_almost_equal(cm.loevinger_coeff(), -1.0, 4) assert_almost_equal(cm.cole_coeff(), -1.0, 4) assert_almost_equal(cm.yule_q(), -1.0, 4) assert_almost_equal(cm.yule_y(), -1.0, 4) assert_almost_equal(cm.informedness(), -1.0, 4) assert_almost_equal(cm.markedness(), -1.0, 4)
def test_negative_correlation(): """Some metrics should have negative sign """ cm = ConfusionMatrix2.from_ccw(10, 120, 8, 300) assert_almost_equal(cm.g_score(), 384.52, 2) assert_almost_equal(cm.chisq_score(), 355.70, 2) mic0, mic1, mic2 = cm.mic_scores() assert_almost_equal(mic0, -0.8496, 4) assert_almost_equal(mic1, -0.8524, 4) assert_almost_equal(mic2, -0.8510, 4) assert_almost_equal(cm.matthews_corr(), -0.9012, 4) assert_almost_equal(cm.informedness(), -0.9052, 4) assert_almost_equal(cm.markedness(), -0.8971, 4) assert_almost_equal(cm.kappa(), -0.6407, 4) inform, marked = cm.informedness(), cm.markedness() expected_matt = geometric_mean(inform, marked) assert_almost_equal(expected_matt, cm.matthews_corr(), 6)
def test_twoway_confusion_2(): """Finley's tornado data (listed in Goodman and Kruskal) """ cm = ConfusionMatrix2.from_ccw(11, 14, 906, 3) assert_almost_equal(cm.g_score(), 70.83, 2) assert_almost_equal(cm.chisq_score(), 314.3, 1) mic0, mic1, mic2 = cm.mic_scores() assert_almost_equal(mic0, 0.555, 3) assert_almost_equal(mic1, 0.698, 3) assert_almost_equal(mic2, 0.614, 3) assert_almost_equal(cm.matthews_corr(), 0.580, 3) assert_almost_equal(cm.informedness(), 0.770, 3) assert_almost_equal(cm.markedness(), 0.437, 3) kappa0, kappa1, kappa2 = cm.kappas() assert_almost_equal(kappa0, 0.431, 3) assert_almost_equal(kappa1, 0.780, 3) assert_almost_equal(kappa2, 0.556, 3)
def test_twoway_confusion_1(): """Finley's tornado data http://www.cawcr.gov.au/projects/verification/Finley/Finley_Tornados.html """ cm = ConfusionMatrix2.from_ccw(28, 72, 2680, 23) assert_almost_equal(cm.g_score(), 126.1, 1) assert_almost_equal(cm.chisq_score(), 397.9, 1) mic0, mic1, mic2 = cm.mic_scores() assert_almost_equal(mic2, 0.429, 3) assert_almost_equal(mic1, 0.497, 3) assert_almost_equal(mic0, 0.382, 3) assert_almost_equal(cm.matthews_corr(), 0.377, 3) assert_almost_equal(cm.informedness(), 0.523, 3) assert_almost_equal(cm.markedness(), 0.271, 3) kappa0, kappa1, kappa2 = cm.kappas() assert_almost_equal(kappa0, 0.267, 3) assert_almost_equal(kappa1, 0.532, 3) assert_almost_equal(kappa2, 0.355, 3)
def test_0100(): m = (0, 1, 0, 0) cm = ConfusionMatrix2.from_ccw(*m) assert_almost_equal(cm.chisq_score(), 0.0, 4) assert_almost_equal(cm.g_score(), 0.0, 4) h, c, v = cm.entropy_scores() assert_almost_equal(h, 1.0, 4) assert_almost_equal(c, 1.0, 4) assert_almost_equal(v, 1.0, 4) assert_almost_equal(cm.dice_coeff(), 0.0, 4) assert_almost_equal(cm.ochiai_coeff(), 0.0, 4) assert_almost_equal(cm.ochiai_coeff_adj(), 0.0, 4) assert_almost_equal(cm.matthews_corr(), -0.5, 4) assert_almost_equal(cm.mp_corr(), -0.5, 4) assert_almost_equal(cm.kappa(), 0.0, 4) assert_almost_equal(cm.loevinger_coeff(), 0.0, 4) assert_almost_equal(cm.cole_coeff(), -0.5, 4) assert_almost_equal(cm.yule_y(), -1.0, 4) assert_almost_equal(cm.yule_q(), -1.0, 4) assert_almost_equal(cm.informedness(), 0.0, 4) assert_almost_equal(cm.markedness(), 0.0, 4)
def test_2x2_invariants(): """Alternative implementations should coincide for 2x2 matrices """ for _ in xrange(100): cm = ConfusionMatrix2.from_random_counts(low=0, high=10) # object idempotency assert_equal( cm.to_ccw(), ConfusionMatrix2.from_ccw(*cm.to_ccw()).to_ccw(), msg="must be able to convert to tuple and create from tuple") # pairwise H, C, V h, c, v = cm.pairwise_hcv()[:3] check_with_nans(v, geometric_mean(h, c), ensure_nans=False) # informedness actual_info = cm.informedness() expected_info_1 = cm.TPR() + cm.TNR() - 1.0 expected_info_2 = cm.TPR() - cm.FPR() check_with_nans(actual_info, expected_info_1, 4, ensure_nans=False) check_with_nans(actual_info, expected_info_2, 4, ensure_nans=False) # markedness actual_mark = cm.markedness() expected_mark_1 = cm.PPV() + cm.NPV() - 1.0 expected_mark_2 = cm.PPV() - cm.FOR() check_with_nans(actual_mark, expected_mark_1, 4, ensure_nans=False) check_with_nans(actual_mark, expected_mark_2, 4, ensure_nans=False) # matthews corr coeff # actual_mcc = cm.matthews_corr() # expected_mcc = geometric_mean(actual_info, actual_mark) # check_with_nans(actual_mcc, expected_mcc, 4, ensure_nans=False) # kappas actual_kappa = cm.kappa() # kappa is the same as harmonic mean of kappa components expected_kappa_1 = harmonic_mean(*cm.kappas()[:2]) check_with_nans(actual_kappa, expected_kappa_1, 4, ensure_nans=False) # kappa is the same as accuracy adjusted for chance expected_kappa_2 = harmonic_mean(*cm.adjust_to_null(cm.accuracy, model='m3')) check_with_nans(actual_kappa, expected_kappa_2, 4, ensure_nans=False) # kappa is the same as Dice coeff adjusted for chance expected_kappa_3 = harmonic_mean(*cm.adjust_to_null(cm.dice_coeff, model='m3')) check_with_nans(actual_kappa, expected_kappa_3, 4, ensure_nans=False) # odds ratio and Yule's Q actual_odds_ratio = cm.DOR() actual_yule_q = cm.yule_q() expected_yule_q = _div(actual_odds_ratio - 1.0, actual_odds_ratio + 1.0) expected_odds_ratio = _div(cm.PLL(), cm.NLL()) check_with_nans(actual_odds_ratio, expected_odds_ratio, 4, ensure_nans=False) check_with_nans(actual_yule_q, expected_yule_q, 4, ensure_nans=False) # F-score and Dice expected_f = harmonic_mean(cm.precision(), cm.recall()) actual_f = cm.fscore() check_with_nans(expected_f, actual_f, 6) check_with_nans(expected_f, cm.dice_coeff(), 6, ensure_nans=False) # association coefficients (1) dice = cm.dice_coeff() expected_jaccard = _div(dice, 2.0 - dice) actual_jaccard = cm.jaccard_coeff() check_with_nans(actual_jaccard, expected_jaccard, 6, ensure_nans=False) # association coefficients (2) jaccard = cm.jaccard_coeff() expected_ss2 = _div(jaccard, 2.0 - jaccard) actual_ss2 = cm.sokal_sneath_coeff() check_with_nans(actual_ss2, expected_ss2, 6, ensure_nans=False) # adjusted ochiai actual = cm.ochiai_coeff_adj() expected = harmonic_mean(*cm.adjust_to_null(cm.ochiai_coeff, model='m3')) check_with_nans(actual, expected, 6, ensure_nans=False)
def matrix_from_matrices(*args): arr = args[0] return ConfusionMatrix2.from_ccw(*arr)