def superflat(files, bias_frame=None, outfile='superflat.fits', bitpix=None, bias_subtract=True, bias_method='row'): """ The superflat is created by bias-offset correcting the input files and median-ing them together. """ # Get overscan region. overscan = makeAmplifierGeometry(files[0]).serial_overscan output_images = dict() for amp in imutils.allAmps(files[0]): images = [] for infile in files: image = afwImage.ImageF(infile, imutils.dm_hdu(amp)) if bias_subtract: if bias_frame: bias_image = afwImage.ImageF(bias_frame, imutils.dm_hdu(amp)) image = bias_subtracted_image(image, bias_image, overscan, bias_method) else: image -= imutils.bias_image(im=image, overscan=overscan, bias_method=bias_method) images.append(image) if lsst.afw.__version__.startswith('12.0'): images = afwImage.vectorImageF(images) output_images[amp] = afwMath.statisticsStack(images, afwMath.MEDIAN) imutils.writeFits(output_images, outfile, files[0]) return outfile
def make_superbias(self, butler, slot_data, **kwargs): """Stack the input data to make superbias frames The superbias frames are stored as data members of this class Parameters ---------- butler : `Butler` The data butler data : `dict` Dictionary (or other structure) contain the input data kwargs Used to override default configuration Returns ------- dtables : `TableDict` The resulting data """ self.safe_update(**kwargs) self._superbias_frame = None mask_files = self.get_mask_files() stat_type = self.config.stat if stat_type is None: stat_type = DEFAULT_STAT_TYPE if stat_type == DEFAULT_STAT_TYPE: output_file = self.tablefile_name() + '.fits' else: output_file = self.get_filename_from_format( SUPERBIAS_STAT_FORMATTER, '.fits', **kwargs) data_files = self.get_input_files(slot_data) if not data_files: return makedir_safe(output_file) if not self.config.skip: out_data = self.extract(butler, slot_data) if out_data is None: self.log_warn_slot_msg(self.config, "extract() returned None.") return if butler is None: template_file = data_files[0] else: template_file = get_filename_from_id(butler, data_files[0]) imutil.writeFits(out_data, output_file, template_file, self.config.bitpix) if butler is not None: flip_data_in_place(output_file) try: self._superbias_frame = self.get_ccd(None, output_file, mask_files) except Exception: self._superbias_frame = None
def run(self, sensor_id, dark_files, mask_files, gains, bias_frame=None): imutils.check_temperatures(dark_files, self.config.temp_set_point_tol, setpoint=self.config.temp_set_point, warn_only=True) median_images = {} for amp in imutils.allAmps(dark_files[0]): median_images[amp] = imutils.fits_median(dark_files, imutils.dm_hdu(amp)) medfile = os.path.join(self.config.output_dir, '%s_median_dark_bp.fits' % sensor_id) imutils.writeFits(median_images, medfile, dark_files[0]) ccd = MaskedCCD(medfile, mask_files=mask_files, bias_frame=bias_frame) md = imutils.Metadata(dark_files[0], 1) exptime = ccd.md.get('EXPTIME') total_bright_pixels = 0 total_bright_columns = 0 if self.config.verbose: self.log.info("Amp # bright pixels # bright columns") # # Write bright pixel and column counts to results file. # results_file = self.config.eotest_results_file if results_file is None: results_file = os.path.join(self.config.output_dir, '%s_eotest_results.fits' % sensor_id) results = EOTestResults(results_file, namps=len(ccd)) pixels = {} columns = {} for amp in ccd: bright_pixels = BrightPixels(ccd, amp, exptime, gains[amp]) pixels[amp], columns[amp] = bright_pixels.find() pix_count = len(pixels[amp]) col_count = len(columns[amp]) total_bright_pixels += pix_count total_bright_columns += col_count results.add_seg_result(amp, 'NUM_BRIGHT_PIXELS', pix_count) results.add_seg_result(amp, 'NUM_BRIGHT_COLUMNS', col_count) self.log.info("%2i %i %i" % (amp, pix_count, col_count)) if self.config.verbose: self.log.info("Total bright pixels: %i" % total_bright_pixels) self.log.info("Total bright columns: %i" % total_bright_columns) results.write(clobber=True) # Generate the mask file based on the pixel and columns. mask_file = os.path.join(self.config.output_dir, '%s_bright_pixel_mask.fits' % sensor_id) if os.path.isfile(mask_file): os.remove(mask_file) generate_mask(medfile, mask_file, self.config.mask_plane, pixels=pixels, columns=columns)
def make_image(config, slot_names, mean_frame_pattern='_mean_bias_image.fits'): """ Make the mosaic image of the entire raft, when illuminated by the CCOB according to config. Returns: - the raw image of the raft - the corrected image where mean bias frame has been removed and gains applied """ file_list = sorted(find_files(config)) fits_files_dict = {slot_names[i] : file_list[i] for i in range(len(file_list))} ccd_dict = {} ccd_dict_wbias = {} gains_dict = {} for slot in slot_names: mean_bias_file = slot + mean_frame_pattern ccd_dict[slot] = sensorTest.MaskedCCD(fits_files_dict[slot]) outfile = os.path.join(config['tmp_dir'],'ccd' + slot + '.fits') image={} ccd_dict_wbias[slot]=sensorTest.MaskedCCD(fits_files_dict[slot],\ bias_frame=os.path.join(config['tmp_dir'],mean_bias_file)) outfile_wbias = os.path.join(config['tmp_dir'],'ccd' + slot + '_wbias.fits') image_wbias={} eotest_results_file = os.path.join(config['eo_data_path'],'{}_eotest_results.fits'.format(ccd_dict[slot].md('LSST_NUM'))) gains_dict[slot] = gains(eotest_results_file) for amp in ccd_dict[slot]: image[amp] = ccd_dict[slot].bias_subtracted_image(amp) image[amp] *= gains_dict[slot][amp] image_wbias[amp] = ccd_dict_wbias[slot].bias_subtracted_image(amp) image_wbias[amp] *= gains_dict[slot][amp] imutils.writeFits({amp: image_wbias[amp].getImage() for amp in ccd_dict_wbias[slot]}, outfile_wbias, fits_files_dict[slot]) imutils.writeFits({amp: image[amp].getImage() for amp in ccd_dict[slot]}, outfile, fits_files_dict[slot]) fits_files_dict_corr={slot : os.path.join(config['tmp_dir'],'ccd'+slot+'.fits') for slot in slot_names} fits_files_dict_corr_wbias={slot : os.path.join(config['tmp_dir'],'ccd'+slot+'_wbias.fits') for slot in slot_names} im_corr = raft.RaftMosaic(fits_files_dict_corr, bias_subtract=False) im_corr_wbias = raft.RaftMosaic(fits_files_dict_corr_wbias, bias_subtract=False) im_raw = raft.RaftMosaic(fits_files_dict, bias_subtract=False) return im_raw, im_corr, im_corr_wbias
def make_superdark(self, butler, slot_data, **kwargs): """Stack the input data to make superflat frames The superdarks are stored as data members of this class Parameters ---------- butler : `Butler` The data butler data : `dict` Dictionary (or other structure) contain the input data kwargs Used to override default configuration Returns ------- dtables : `TableDict` The resulting data """ self.safe_update(**kwargs) mask_files = self.get_mask_files() output_file = self.tablefile_name() + '.fits' if not slot_data['DARK']: return makedir_safe(output_file) if not self.config.skip: sdark = self.extract(butler, slot_data) if butler is None: template_file = slot_data['DARK'][0] else: template_file = get_filename_from_id(butler, slot_data['DARK'][0]) imutil.writeFits(sdark, output_file, template_file, self.config.bitpix) if butler is not None: flip_data_in_place(output_file) self._superdark_frame = self.get_ccd(None, output_file, mask_files)
def calibrated_stack(infiles, outfile, bias_frame=None, dark_frame=None, linearity_correction=None, bitpix=32): ccds = [ MaskedCCD(infile, bias_frame=bias_frame, dark_frame=dark_frame, linearity_correction=linearity_correction) for infile in infiles ] all_amps = imutils.allAmps(infiles[0]) amp_images = {} for amp in all_amps: amp_ims = [ccd.bias_subtracted_image(amp) for ccd in ccds] amp_images[amp] = imutils.stack(amp_ims).getImage() imutils.writeFits(amp_images, outfile, infiles[0], bitpix=bitpix)
def run(self, sensor_id, pre_flat_darks, flat, post_flat_darks, mask_files, gains): darks = list(pre_flat_darks) + list(post_flat_darks) imutils.check_temperatures(darks, self.config.temp_set_point_tol, setpoint=self.config.temp_set_point, warn_only=True) # Check that pre-flat dark frames all have the same exposure time md = imutils.Metadata(pre_flat_darks[0], 1) exptime = md.get('EXPTIME') for item in pre_flat_darks[1:]: md = imutils.Metadata(item, 1) if exptime != md.get('EXPTIME'): raise RuntimeError("Exposure times of pre-flat darks differ.") # Make a median image of the preflat darks median_images = {} for amp in imutils.allAmps(darks[0]): median_images[amp] = imutils.fits_median(pre_flat_darks, imutils.dm_hdu(amp)) medfile = os.path.join(self.config.output_dir, '%s_persistence_dark_median.fits' % sensor_id) imutils.writeFits(median_images, medfile, darks[0]) ccd = MaskedCCD(medfile, mask_files=mask_files) # Define the sub-region for assessing the deferred charge. # This is the same bounding box for all segments, so use amp=1. image = ccd.unbiased_and_trimmed_image(1) xllc = ((image.getWidth() - self.config.region_size) / 2. - self.config.region_x_offset) yllc = ((image.getHeight() - self.config.region_size) / 2. - self.config.region_y_offset) imaging_reg = afwGeom.Box2I( afwGeom.Point2I(int(xllc), int(yllc)), afwGeom.Extent2I(self.config.region_size, self.config.region_size)) overscan = ccd.amp_geom.serial_overscan # Compute reference dark current for each segment. dc_ref = {} for amp in ccd: mi = imutils.unbias_and_trim(ccd[amp], overscan, imaging_reg) dc_ref[amp] = afwMath.makeStatistics(mi, afwMath.MEDIAN, ccd.stat_ctrl).getValue() dc_ref[amp] *= gains[amp] / exptime # Extract reference time for computing the time dependence # of the deferred charge as the observation time + exposure time # from the saturated flat. tref = readout_time(flat) # Loop over post-flat darks, compute median e-/pixel in # subregion, subtract dc_ref*exptime, persist, and report the # deferred charge vs time (using MJD-OBS + EXPTIME) for each amp. deferred_charges = [] times = [] for dark in post_flat_darks: ccd = MaskedCCD(dark, mask_files=mask_files) dt = readout_time(dark) - tref times.append(dt.sec) exptime = ccd.md.get('EXPTIME') charge = {} for amp in ccd: mi = imutils.unbias_and_trim(ccd[amp], overscan, imaging_reg) estimators = afwMath.MEDIAN | afwMath.STDEV stats = afwMath.makeStatistics(mi, estimators, ccd.stat_ctrl) value = (stats.getValue(afwMath.MEDIAN) * gains[amp] - dc_ref[amp] * exptime) stdev = (stats.getValue(afwMath.STDEV) * gains[amp] - dc_ref[amp] * exptime) charge[amp] = (value, stdev) deferred_charges.append(charge) if self.config.verbose: for amp in ccd: self.log.info("amp: %i" % amp) for i, time in enumerate(times): self.log.info("%.1f %e %e" % (time, deferred_charges[i][amp][0], deferred_charges[i][amp][1])) outfile = os.path.join(self.config.output_dir, '%s_persistence.fits' % sensor_id) self.write(times, deferred_charges, outfile, clobber=True)
def run(self, sensor_id, dark_files, mask_files, gains, bias_frame=None): imutils.check_temperatures(dark_files, self.config.temp_set_point_tol, setpoint=self.config.temp_set_point, warn_only=True) median_images = {} md = imutils.Metadata(dark_files[0], 1) for amp in imutils.allAmps(dark_files[0]): median_images[amp] = imutils.fits_median(dark_files, imutils.dm_hdu(amp)) medfile = os.path.join(self.config.output_dir, '%s_median_dark_current.fits' % sensor_id) imutils.writeFits(median_images, medfile, dark_files[0]) ccd = MaskedCCD(medfile, mask_files=mask_files, bias_frame=bias_frame) dark95s = {} exptime = md.get('EXPTIME') if self.config.verbose: self.log.info("Amp 95 percentile median") dark_curr_pixels = [] dark_curr_pixels_per_amp = {} for amp in ccd: imaging_region = ccd.amp_geom.imaging overscan = ccd.amp_geom.serial_overscan image = imutils.unbias_and_trim(ccd[amp].getImage(), overscan, imaging_region) mask = imutils.trim(ccd[amp].getMask(), imaging_region) imarr = image.getArray() mskarr = mask.getArray() pixels = imarr.reshape(1, imarr.shape[0] * imarr.shape[1])[0] masked = mskarr.reshape(1, mskarr.shape[0] * mskarr.shape[1])[0] unmasked = [ pixels[i] for i in range(len(pixels)) if masked[i] == 0 ] unmasked.sort() unmasked = np.array(unmasked) * gains[amp] / exptime dark_curr_pixels_per_amp[amp] = unmasked dark_curr_pixels.extend(unmasked) try: dark95s[amp] = unmasked[int(len(unmasked) * 0.95)] median = unmasked[len(unmasked) / 2] except IndexError as eobj: print str(eobj) dark95s[amp] = -1. median = -1. if self.config.verbose: self.log.info("%2i %.2e %.2e" % (amp, dark95s[amp], median)) # # Compute 95th percentile dark current for CCD as a whole. # dark_curr_pixels = sorted(dark_curr_pixels) darkcurr95 = dark_curr_pixels[int(len(dark_curr_pixels) * 0.95)] dark95mean = np.mean(dark95s.values()) if self.config.verbose: #self.log.info("CCD: mean 95 percentile value = %s" % dark95mean) self.log.info("CCD-wide 95 percentile value = %s" % darkcurr95) # # Update header of dark current median image file with dark # files used and dark95 values, and write dark95 values to the # eotest results file. # results_file = self.config.eotest_results_file if results_file is None: results_file = os.path.join(self.config.output_dir, '%s_eotest_results.fits' % sensor_id) results = EOTestResults(results_file, namps=len(ccd)) output = fits.open(medfile) for i, dark in enumerate(dark_files): output[0].header['DARK%02i' % i] = os.path.basename(dark) # Write overall dark current 95th percentile results.output['AMPLIFIER_RESULTS'].header['DARK95'] = darkcurr95 for amp in ccd: output[0].header['DARK95%s' % imutils.channelIds[amp]] = dark95s[amp] results.add_seg_result(amp, 'DARK_CURRENT_95', dark95s[amp]) fitsWriteto(output, medfile, clobber=True, checksum=True) results.write(clobber=True) return dark_curr_pixels_per_amp, dark95s