Exemple #1
0
def _pointsOnEllipse(c, smaa, smia, ang, n):
    """Generates points lying on the ellipse with center c,
    semi-major/semi-minor axis lengths smaa/smia, and major axis
    angle (E of N) ang.
    """
    points = []
    c = g.cartesianUnitVector(c)
    north, east = g.northEast(c)
    sa = math.sin(math.radians(ang))
    ca = math.cos(math.radians(ang))
    smaa = math.radians(smaa * g.DEG_PER_ARCSEC)
    smia = math.radians(smia * g.DEG_PER_ARCSEC)
    aoff = random.uniform(0.0, 2.0 * math.pi)
    for i in xrange(n):
        a = aoff + 2.0 * i * math.pi / n
        x = smaa * math.cos(a)
        y = smia * math.sin(a)
        # rotate x, y by a
        nc = ca * x - sa * y
        ec = sa * x + ca * y
        cc = math.sqrt(abs(1.0 - nc * nc - ec * ec))
        points.append(
            g.normalize((cc * c[0] + nc * north[0] + ec * east[0],
                         cc * c[1] + nc * north[1] + ec * east[1],
                         cc * c[2] + nc * north[2] + ec * east[2])))
    return points
Exemple #2
0
def _pointsOnEllipse(c, smaa, smia, ang, n):
    """Generates points lying on the ellipse with center c,
    semi-major/semi-minor axis lengths smaa/smia, and major axis
    angle (E of N) ang.
    """
    points = []
    c = g.cartesianUnitVector(c)
    north, east = g.northEast(c)
    sa = math.sin(math.radians(ang))
    ca = math.cos(math.radians(ang))
    smaa = math.radians(smaa * g.DEG_PER_ARCSEC)
    smia = math.radians(smia * g.DEG_PER_ARCSEC)
    aoff = random.uniform(0.0, 2.0 * math.pi)
    for i in xrange(n):
        a = aoff + 2.0 * i * math.pi / n
        x = smaa * math.cos(a)
        y = smia * math.sin(a)
        # rotate x, y by a
        nc = ca * x - sa * y
        ec = sa * x + ca * y
        cc = math.sqrt(abs(1.0 - nc * nc - ec * ec))
        points.append(g.normalize((cc * c[0] + nc * north[0] + ec * east[0],
                                   cc * c[1] + nc * north[1] + ec * east[1],
                                   cc * c[2] + nc * north[2] + ec * east[2])))
    return points
Exemple #3
0
 def testSpatialPredicates(self):
     # ellipse-point
     for cen in ((0.0, 0.0), (45.0, 45.0), (135.0, -45.0), (0.0, 90.0)):
         smaa = random.uniform(30, 20000)
         smia = random.uniform(1, smaa)
         a = random.uniform(0.0, 360.0)
         e = g.SphericalEllipse(cen, smaa, smia, a)
         self.assertTrue(e.contains(cen))
         self.assertTrue(e.contains(g.cartesianUnitVector(cen)))
         self.assertTrue(e.intersects(cen))
         self.assertTrue(e.intersects(g.cartesianUnitVector(cen)))
         points = _pointsOnCircle(
             cen,
             e.getInnerCircle().getRadius() - g.ANGLE_EPSILON, 100)
         for p in points:
             self.assertTrue(e.contains(p))
         points = _pointsOnCircle(
             cen,
             e.getBoundingCircle().getRadius() + g.ANGLE_EPSILON, 100)
         for p in points:
             self.assertFalse(e.intersects(p))
         points = _pointsOnEllipse(
             cen, smaa - g.ANGLE_EPSILON * g.ARCSEC_PER_DEG,
             smia - g.ANGLE_EPSILON * g.ARCSEC_PER_DEG, a, 100)
         for p in points:
             self.assertTrue(e.contains(p))
         points = _pointsOnEllipse(
             cen, smaa + g.ANGLE_EPSILON * g.ARCSEC_PER_DEG,
             smia + g.ANGLE_EPSILON * g.ARCSEC_PER_DEG, a, 100)
         for p in points:
             self.assertFalse(e.contains(p))
     # ellipse-circle
     cen = (0.0, 0.0)
     e = g.SphericalEllipse(cen, 7200.0, 3600.0, 90.0)
     c = g.SphericalCircle(cen,
                           e.getInnerCircle().getRadius() - g.ANGLE_EPSILON)
     self.assertTrue(e.intersects(c))
     self.assertTrue(c.intersects(e))
     self.assertTrue(e.contains(c))
     self.assertFalse(c.contains(e))
     # ellipse-box
     b = g.SphericalBox((-0.5, -0.5), (0.5, 0.5))
     self.assertTrue(e.intersects(b))
     self.assertTrue(e.contains(b))
     b = g.SphericalBox((0.5, -0.5), (359.5, 0.5))
     self.assertTrue(e.intersects(b))
     self.assertFalse(e.contains(b))
Exemple #4
0
 def testCartesianUnitVector(self):
     v = g.cartesianUnitVector((1.0, 0.0, 0.0))
     self.assertEqual(v[0], 1.0)
     self.assertEqual(v[1], 0.0)
     self.assertEqual(v[2], 0.0)
     v = g.cartesianUnitVector((1.0, 1.0, 1.0))
     self.assertAlmostEqual(v[0], 0.577350269189626)
     self.assertAlmostEqual(v[1], 0.577350269189626)
     self.assertAlmostEqual(v[2], 0.577350269189626)
     v = g.cartesianUnitVector((45.0, 35.2643896827547))
     self.assertAlmostEqual(v[0], 0.577350269189626)
     self.assertAlmostEqual(v[1], 0.577350269189626)
     self.assertAlmostEqual(v[2], 0.577350269189626)
     v = g.cartesianUnitVector((180.0, 0.0))
     self.assertAlmostEqual(v[0], -1.0)
     self.assertAlmostEqual(v[1], 0.0)
     self.assertAlmostEqual(v[2], 0.0)
Exemple #5
0
 def testCartesianUnitVector(self):
     v = g.cartesianUnitVector((1.0, 0.0, 0.0))
     self.assertEqual(v[0], 1.0)
     self.assertEqual(v[1], 0.0)
     self.assertEqual(v[2], 0.0)
     v = g.cartesianUnitVector((1.0, 1.0, 1.0))
     self.assertAlmostEqual(v[0], 0.577350269189626)
     self.assertAlmostEqual(v[1], 0.577350269189626)
     self.assertAlmostEqual(v[2], 0.577350269189626)
     v = g.cartesianUnitVector((45.0, 35.2643896827547))
     self.assertAlmostEqual(v[0], 0.577350269189626)
     self.assertAlmostEqual(v[1], 0.577350269189626)
     self.assertAlmostEqual(v[2], 0.577350269189626)
     v = g.cartesianUnitVector((180.0, 0.0))
     self.assertAlmostEqual(v[0], -1.0)
     self.assertAlmostEqual(v[1], 0.0)
     self.assertAlmostEqual(v[2], 0.0)
Exemple #6
0
 def testSpatialPredicates(self):
     # ellipse-point
     for cen in ((0.0, 0.0), (45.0, 45.0), (135.0, -45.0), (0.0, 90.0)):
         smaa = random.uniform(30, 20000)
         smia = random.uniform(1, smaa)
         a = random.uniform(0.0, 360.0)
         e = g.SphericalEllipse(cen, smaa, smia, a)
         self.assertTrue(e.contains(cen))
         self.assertTrue(e.contains(g.cartesianUnitVector(cen)))
         self.assertTrue(e.intersects(cen))
         self.assertTrue(e.intersects(g.cartesianUnitVector(cen)))
         points = _pointsOnCircle(
             cen, e.getInnerCircle().getRadius() - g.ANGLE_EPSILON, 100)
         for p in points:
             self.assertTrue(e.contains(p))
         points = _pointsOnCircle(
             cen, e.getBoundingCircle().getRadius() + g.ANGLE_EPSILON, 100)
         for p in points:
             self.assertFalse(e.intersects(p))
         points = _pointsOnEllipse(
             cen, smaa - g.ANGLE_EPSILON * g.ARCSEC_PER_DEG,
             smia - g.ANGLE_EPSILON * g.ARCSEC_PER_DEG, a, 100)
         for p in points:
             self.assertTrue(e.contains(p))
         points = _pointsOnEllipse(
             cen, smaa + g.ANGLE_EPSILON * g.ARCSEC_PER_DEG,
             smia + g.ANGLE_EPSILON * g.ARCSEC_PER_DEG, a, 100)
         for p in points:
             self.assertFalse(e.contains(p))
     # ellipse-circle
     cen = (0.0, 0.0)
     e = g.SphericalEllipse(cen, 7200.0, 3600.0, 90.0)
     c = g.SphericalCircle(
         cen, e.getInnerCircle().getRadius() - g.ANGLE_EPSILON)
     self.assertTrue(e.intersects(c))
     self.assertTrue(c.intersects(e))
     self.assertTrue(e.contains(c))
     self.assertFalse(c.contains(e))
     # ellipse-box
     b = g.SphericalBox((-0.5, -0.5), (0.5, 0.5))
     self.assertTrue(e.intersects(b))
     self.assertTrue(e.contains(b))
     b = g.SphericalBox((0.5, -0.5), (359.5, 0.5))
     self.assertTrue(e.intersects(b))
     self.assertFalse(e.contains(b))
Exemple #7
0
def _pointsOnCircle(c, r, n, clockwise=False):
    """Generates an n-gon lying on the circle with center c and
    radius r. Vertices are equi-spaced.
    """
    c = g.cartesianUnitVector(c)
    north, east = g.northEast(c)
    points = []
    sr = math.sin(math.radians(r))
    cr = math.cos(math.radians(r))
    aoff = random.uniform(0.0, 2.0 * math.pi)
    for i in xrange(n):
        a = 2.0 * i * math.pi / n
        if not clockwise:
            a = -a
        sa = math.sin(a + aoff)
        ca = math.cos(a + aoff)
        p = (ca * north[0] + sa * east[0], ca * north[1] + sa * east[1],
             ca * north[2] + sa * east[2])
        points.append(
            g.normalize((cr * c[0] + sr * p[0], cr * c[1] + sr * p[1],
                         cr * c[2] + sr * p[2])))
    return points
Exemple #8
0
def _pointsOnPeriodicHypotrochoid(c, R, r, d, n):
    assert isinstance(r, int) and isinstance(R, int)
    assert R > r
    assert (2 * r) % (R - r) == 0
    points = []
    c = g.cartesianUnitVector(c)
    north, east = g.northEast(c)
    scale = 1.0 / (R - r + d + 1)
    period = (2 * r) / (R - r)
    if period % 2 != 0:
        period *= 2
    for i in xrange(n):
        theta = i * period * math.pi / n
        x = (R - r) * math.cos(theta) + d * math.cos((R - r) * theta / r)
        y = (R - r) * math.sin(theta) - d * math.sin((R - r) * theta / r)
        x *= scale
        y *= scale
        z = math.sqrt(1.0 - x * x - y * y)
        points.append(g.normalize((z * c[0] + x * north[0] + y * east[0],
                                   z * c[1] + x * north[1] + y * east[1],
                                   z * c[2] + x * north[2] + y * east[2])))
    return points
Exemple #9
0
def _pointsOnPeriodicHypotrochoid(c, R, r, d, n):
    assert isinstance(r, int) and isinstance(R, int)
    assert R > r
    assert (2 * r) % (R - r) == 0
    points = []
    c = geom.cartesianUnitVector(c)
    north, east = geom.northEast(c)
    scale = 1.0 / (R - r + d + 1)
    period = (2 * r) / (R - r)
    if period % 2 != 0:
        period *= 2
    for i in range(n):
        theta = i * period * math.pi / n
        x = (R - r) * math.cos(theta) + d * math.cos((R - r) * theta / r)
        y = (R - r) * math.sin(theta) - d * math.sin((R - r) * theta / r)
        x *= scale
        y *= scale
        z = math.sqrt(1.0 - x * x - y * y)
        points.append(geom.normalize((z * c[0] + x * north[0] + y * east[0],
                                   z * c[1] + x * north[1] + y * east[1],
                                   z * c[2] + x * north[2] + y * east[2])))
    return points
Exemple #10
0
def _pointsOnCircle(c, r, n, clockwise=False):
    """Generates an n-gon lying on the circle with center c and
    radius r. Vertices are equi-spaced.
    """
    c = g.cartesianUnitVector(c)
    north, east = g.northEast(c)
    points = []
    sr = math.sin(math.radians(r))
    cr = math.cos(math.radians(r))
    aoff = random.uniform(0.0, 2.0 * math.pi)
    for i in xrange(n):
        a = 2.0 * i * math.pi / n
        if not clockwise:
            a = -a
        sa = math.sin(a + aoff)
        ca = math.cos(a + aoff)
        p = (ca * north[0] + sa * east[0],
             ca * north[1] + sa * east[1],
             ca * north[2] + sa * east[2])
        points.append(g.normalize((cr * c[0] + sr * p[0],
                                   cr * c[1] + sr * p[1],
                                   cr * c[2] + sr * p[2])))
    return points
Exemple #11
0
 def testEdge(self):
     v1 = g.cartesianUnitVector(0.0, 45.0)
     v2 = g.cartesianUnitVector(180.0, 45.0)
     n = (0.0, -1.0, 0.0)
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertEqual(b.getMin()[0], 0.0)
     self.assertEqual(b.getMax()[0], 360.0)
     self.assertAlmostEqual(b.getMin()[1], 45.0)
     self.assertEqual(b.getMax()[1], 90.0)
     v1 = g.cartesianUnitVector(0.0, 45.0)
     v2 = g.cartesianUnitVector(0.0, 75.0)
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertAlmostEqual(b.getMin()[0], 0.0)
     self.assertAlmostEqual(b.getMax()[0], 0.0)
     self.assertAlmostEqual(b.getMin()[1], 45.0)
     self.assertAlmostEqual(b.getMax()[1], 75.0)
     v1 = g.cartesianUnitVector(-0.1 * g.ANGLE_EPSILON, 45.0)
     v2 = g.cartesianUnitVector(180 + 0.1 * g.ANGLE_EPSILON, 45.0)
     n = g.normalize(g.cross(v1, v2))
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertEqual(b.getMin()[0], 0.0)
     self.assertEqual(b.getMax()[0], 360.0)
     self.assertAlmostEqual(b.getMin()[1], 45.0)
     self.assertEqual(b.getMax()[1], 90.0)
     v1 = g.cartesianUnitVector(-0.1 * g.ANGLE_EPSILON, 45.0)
     v2 = g.cartesianUnitVector(0.1 * g.ANGLE_EPSILON, 75.0)
     n = g.normalize(g.cross(v1, v2))
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertAlmostEqual(b.getMin()[0], 360.0)
     self.assertAlmostEqual(b.getMax()[0], 0.0)
     self.assertAlmostEqual(b.getMin()[1], 45.0)
     self.assertAlmostEqual(b.getMax()[1], 75.0)
     v1 = g.cartesianUnitVector(1.0, 1.0)
     v2 = g.cartesianUnitVector(2.0, 2.0)
     n = g.normalize(g.cross(v1, v2))
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertAlmostEqual(b.getMin()[0], 1.0)
     self.assertAlmostEqual(b.getMax()[0], 2.0)
     self.assertAlmostEqual(b.getMin()[1], 1.0)
     self.assertAlmostEqual(b.getMax()[1], 2.0)
     v1 = g.cartesianUnitVector(-1.0, 3.0)
     v2 = g.cartesianUnitVector(2.0, -1.0)
     n = g.normalize(g.cross(v1, v2))
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertAlmostEqual(b.getMin()[0], 359.0)
     self.assertAlmostEqual(b.getMax()[0], 2.0)
     self.assertAlmostEqual(b.getMin()[1], -1.0)
     self.assertAlmostEqual(b.getMax()[1], 3.0)
Exemple #12
0
 def testEdge(self):
     v1 = g.cartesianUnitVector(0.0, 45.0)
     v2 = g.cartesianUnitVector(180.0, 45.0)
     n = (0.0, -1.0, 0.0)
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertEqual(b.getMin()[0], 0.0)
     self.assertEqual(b.getMax()[0], 360.0)
     self.assertAlmostEqual(b.getMin()[1], 45.0)
     self.assertEqual(b.getMax()[1], 90.0)
     v1 = g.cartesianUnitVector(0.0, 45.0)
     v2 = g.cartesianUnitVector(0.0, 75.0)
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertAlmostEqual(b.getMin()[0], 0.0)
     self.assertAlmostEqual(b.getMax()[0], 0.0)
     self.assertAlmostEqual(b.getMin()[1], 45.0)
     self.assertAlmostEqual(b.getMax()[1], 75.0)
     v1 = g.cartesianUnitVector(-0.1 * g.ANGLE_EPSILON, 45.0)
     v2 = g.cartesianUnitVector(180 + 0.1 *g.ANGLE_EPSILON, 45.0)
     n = g.normalize(g.cross(v1, v2))
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertEqual(b.getMin()[0], 0.0)
     self.assertEqual(b.getMax()[0], 360.0)
     self.assertAlmostEqual(b.getMin()[1], 45.0)
     self.assertEqual(b.getMax()[1], 90.0)
     v1 = g.cartesianUnitVector(-0.1 * g.ANGLE_EPSILON, 45.0)
     v2 = g.cartesianUnitVector(0.1 * g.ANGLE_EPSILON, 75.0)
     n = g.normalize(g.cross(v1, v2))
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertAlmostEqual(b.getMin()[0], 360.0)
     self.assertAlmostEqual(b.getMax()[0], 0.0)
     self.assertAlmostEqual(b.getMin()[1], 45.0)
     self.assertAlmostEqual(b.getMax()[1], 75.0)
     v1 = g.cartesianUnitVector(1.0, 1.0)
     v2 = g.cartesianUnitVector(2.0, 2.0)
     n = g.normalize(g.cross(v1, v2))
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertAlmostEqual(b.getMin()[0], 1.0)
     self.assertAlmostEqual(b.getMax()[0], 2.0)
     self.assertAlmostEqual(b.getMin()[1], 1.0)
     self.assertAlmostEqual(b.getMax()[1], 2.0)
     v1 = g.cartesianUnitVector(-1.0, 3.0)
     v2 = g.cartesianUnitVector(2.0, -1.0)
     n = g.normalize(g.cross(v1, v2))
     b = g.SphericalBox.edge(v1, v2, n)
     self.assertAlmostEqual(b.getMin()[0], 359.0)
     self.assertAlmostEqual(b.getMax()[0], 2.0)
     self.assertAlmostEqual(b.getMin()[1], -1.0)
     self.assertAlmostEqual(b.getMax()[1], 3.0)