def calcBasicColors(self, sedList, bandpassDict, makeCopy = False): """ This will calculate a set of colors from a list of SED objects when there is no need to redshift the SEDs. @param [in] sedList is the set of spectral objects from the models SEDs provided by loaders in rgStar or rgGalaxy. NOTE: Since this uses photometryBase.manyMagCalc_list the SED objects will be changed. @param [in] bandpassDict is a BandpassDict class instance with the Bandpasses set to those for the magnitudes given for the catalog object @param [in] makeCopy indicates whether or not to operate on copies of the SED objects in sedList since this method will change the wavelength grid. @param [out] modelColors is the set of colors in the Bandpasses provided for the given sedList. """ modelColors = [] for specObj in sedList: if makeCopy==True: fileSED = Sed() fileSED.setSED(wavelen = specObj.wavelen, flambda = specObj.flambda) sEDMags = bandpassDict.magListForSed(fileSED) else: sEDMags = bandpassDict.magListForSed(specObj) colorInfo = [] for filtNum in range(0, len(bandpassDict)-1): colorInfo.append(sEDMags[filtNum] - sEDMags[filtNum+1]) modelColors.append(colorInfo) return modelColors
def __init__(self, catsim_cat, om10_cat='twinkles_tdc_rung4.fits', density_param=1.): """ Input: catsim_cat: The results array from an instance catalog. density_param: A float between 0. and 1.0 that determines the fraction of eligible agn objects that become lensed. Output: updated_catalog: A new results array with lens systems added. """ self.catalog = catsim_cat # ****** THIS ASSUMES THAT THE ENVIRONMENT VARIABLE OM10_DIR IS SET ******* lensdb = om10.DB(catalog=om10_cat) self.lenscat = lensdb.lenses.copy() self.density_param = density_param self.bandpassDict = BandpassDict.loadTotalBandpassesFromFiles( bandpassNames=['i']) specFileStart = 'Burst' for key, val in sorted(iteritems(SpecMap.subdir_map)): if re.match(key, specFileStart): galSpecDir = str(val) galDir = str( getPackageDir('sims_sed_library') + '/' + galSpecDir + '/') self.LRG_name = 'Burst.25E09.1Z.spec' self.LRG = Sed() self.LRG.readSED_flambda(str(galDir + self.LRG_name))
def calcBasicColors(self, sedList, bandpassDict, makeCopy=False): """ This will calculate a set of colors from a list of SED objects when there is no need to redshift the SEDs. @param [in] sedList is the set of spectral objects from the models SEDs provided by loaders in rgStar or rgGalaxy. NOTE: Since this uses photometryBase.manyMagCalc_list the SED objects will be changed. @param [in] bandpassDict is a BandpassDict class instance with the Bandpasses set to those for the magnitudes given for the catalog object @param [in] makeCopy indicates whether or not to operate on copies of the SED objects in sedList since this method will change the wavelength grid. @param [out] modelColors is the set of colors in the Bandpasses provided for the given sedList. """ modelColors = [] for specObj in sedList: if makeCopy == True: fileSED = Sed() fileSED.setSED(wavelen=specObj.wavelen, flambda=specObj.flambda) sEDMags = bandpassDict.magListForSed(fileSED) else: sEDMags = bandpassDict.magListForSed(specObj) colorInfo = [] for filtNum in range(0, len(bandpassDict) - 1): colorInfo.append(sEDMags[filtNum] - sEDMags[filtNum + 1]) modelColors.append(colorInfo) return modelColors
def testAlternateBandpassesStars(self): """ This will test our ability to do photometry using non-LSST bandpasses. It will first calculate the magnitudes using the getters in cartoonPhotometryStars. It will then load the alternate bandpass files 'by hand' and re-calculate the magnitudes and make sure that the magnitude values agree. This is guarding against the possibility that some default value did not change and the code actually ended up loading the LSST bandpasses. """ obs_metadata_pointed = ObservationMetaData(mjd=2013.23, boundType='circle', pointingRA=200.0, pointingDec=-30.0, boundLength=1.0) test_cat = cartoonStars(self.star, obs_metadata=obs_metadata_pointed) with lsst.utils.tests.getTempFilePath('.txt') as catName: test_cat.write_catalog(catName) with open(catName, 'r') as input_file: lines = input_file.readlines() self.assertGreater(len(lines), 1) cartoonDir = os.path.join(getPackageDir('sims_photUtils'), 'tests', 'cartoonSedTestData') testBandPasses = {} keys = ['u', 'g', 'r', 'i', 'z'] bplist = [] for kk in keys: testBandPasses[kk] = Bandpass() testBandPasses[kk].readThroughput( os.path.join(cartoonDir, "test_bandpass_%s.dat" % kk)) bplist.append(testBandPasses[kk]) sedObj = Sed() phiArray, waveLenStep = sedObj.setupPhiArray(bplist) i = 0 # since all of the SEDs in the cartoon database are the same, just test on the first # if we ever include more SEDs, this can be something like # for ss in test_cata.sedMasterList: ss = test_cat.sedMasterList[0] ss.resampleSED(wavelen_match=bplist[0].wavelen) ss.flambdaTofnu() mags = -2.5 * np.log10( np.sum(phiArray * ss.fnu, axis=1) * waveLenStep) - ss.zp self.assertEqual(len(mags), len(test_cat.cartoonBandpassDict)) self.assertGreater(len(mags), 0) for j in range(len(mags)): self.assertAlmostEqual(mags[j], test_cat.magnitudeMasterList[i][j], 4)
def testAlternateBandpassesStars(self): """ This will test our ability to do photometry using non-LSST bandpasses. It will first calculate the magnitudes using the getters in cartoonPhotometryStars. It will then load the alternate bandpass files 'by hand' and re-calculate the magnitudes and make sure that the magnitude values agree. This is guarding against the possibility that some default value did not change and the code actually ended up loading the LSST bandpasses. """ obs_metadata_pointed = ObservationMetaData(mjd=2013.23, boundType='circle', pointingRA=200.0, pointingDec=-30.0, boundLength=1.0) test_cat = cartoonStars(self.star, obs_metadata=obs_metadata_pointed) with lsst.utils.tests.getTempFilePath('.txt') as catName: test_cat.write_catalog(catName) with open(catName, 'r') as input_file: lines = input_file.readlines() self.assertGreater(len(lines), 1) cartoonDir = os.path.join(getPackageDir('sims_photUtils'), 'tests', 'cartoonSedTestData') testBandPasses = {} keys = ['u', 'g', 'r', 'i', 'z'] bplist = [] for kk in keys: testBandPasses[kk] = Bandpass() testBandPasses[kk].readThroughput(os.path.join(cartoonDir, "test_bandpass_%s.dat" % kk)) bplist.append(testBandPasses[kk]) sedObj = Sed() phiArray, waveLenStep = sedObj.setupPhiArray(bplist) i = 0 # since all of the SEDs in the cartoon database are the same, just test on the first # if we ever include more SEDs, this can be something like # for ss in test_cata.sedMasterList: ss = test_cat.sedMasterList[0] ss.resampleSED(wavelen_match = bplist[0].wavelen) ss.flambdaTofnu() mags = -2.5*np.log10(np.sum(phiArray*ss.fnu, axis=1)*waveLenStep) - ss.zp self.assertEqual(len(mags), len(test_cat.cartoonBandpassDict)) self.assertGreater(len(mags), 0) for j in range(len(mags)): self.assertAlmostEqual(mags[j], test_cat.magnitudeMasterList[i][j], 4)
def testSystematicUncertainty(self): """ Test that systematic uncertainty is added correctly. """ sigmaSys = 0.002 m5 = [23.5, 24.3, 22.1, 20.0, 19.5, 21.7] photParams = PhotometricParameters(sigmaSys=sigmaSys) bandpassDict = BandpassDict.loadTotalBandpassesFromFiles() obs_metadata = ObservationMetaData(unrefractedRA=23.0, unrefractedDec=45.0, m5=m5, bandpassName=self.bandpasses) magnitudes = bandpassDict.magListForSed(self.starSED) skySeds = [] for i in range(len(self.bandpasses)): skyDummy = Sed() skyDummy.readSED_flambda( os.path.join(lsst.utils.getPackageDir('throughputs'), 'baseline', 'darksky.dat')) normalizedSkyDummy = setM5(obs_metadata.m5[self.bandpasses[i]], skyDummy, self.totalBandpasses[i], self.hardwareBandpasses[i], seeing=LSSTdefaults().seeing( self.bandpasses[i]), photParams=PhotometricParameters()) skySeds.append(normalizedSkyDummy) for i in range(len(self.bandpasses)): snr = calcSNR_sed(self.starSED, self.totalBandpasses[i], skySeds[i], self.hardwareBandpasses[i], seeing=LSSTdefaults().seeing(self.bandpasses[i]), photParams=PhotometricParameters()) testSNR, gamma = calcSNR_m5( numpy.array([magnitudes[i]]), [self.totalBandpasses[i]], numpy.array([m5[i]]), photParams=PhotometricParameters(sigmaSys=0.0)) self.assertAlmostEqual(snr, testSNR[0], 10, msg = 'failed on calcSNR_m5 test %e != %e ' \ % (snr, testSNR[0])) control = numpy.sqrt( numpy.power(magErrorFromSNR(testSNR), 2) + numpy.power(sigmaSys, 2))
def testAlternateBandpassesStars(self): """ This will test our ability to do photometry using non-LSST bandpasses. It will first calculate the magnitudes using the getters in cartoonPhotometryStars. It will then load the alternate bandpass files 'by hand' and re-calculate the magnitudes and make sure that the magnitude values agree. This is guarding against the possibility that some default value did not change and the code actually ended up loading the LSST bandpasses. """ obs_metadata_pointed=ObservationMetaData(mjd=2013.23, boundType='circle',unrefractedRA=200.0,unrefractedDec=-30.0, boundLength=1.0) test_cat=cartoonStars(self.star,obs_metadata=obs_metadata_pointed) test_cat.write_catalog("testStarsCartoon.txt") cartoonDir = os.getenv('SIMS_PHOTUTILS_DIR')+'/tests/cartoonSedTestData/' testBandPasses = {} keys = ['u','g','r','i','z'] bplist = [] for kk in keys: testBandPasses[kk] = Bandpass() testBandPasses[kk].readThroughput(os.path.join(cartoonDir,"test_bandpass_%s.dat" % kk)) bplist.append(testBandPasses[kk]) sedObj = Sed() phiArray, waveLenStep = sedObj.setupPhiArray(bplist) i = 0 #since all of the SEDs in the cartoon database are the same, just test on the first #if we ever include more SEDs, this can be something like #for ss in test_cata.sedMasterList: # ss=test_cat.sedMasterList[0] ss.resampleSED(wavelen_match = bplist[0].wavelen) ss.flambdaTofnu() mags = -2.5*numpy.log10(numpy.sum(phiArray*ss.fnu, axis=1)*waveLenStep) - ss.zp self.assertTrue(len(mags)==len(test_cat.bandpassDict)) self.assertTrue(len(mags)>0) for j in range(len(mags)): self.assertAlmostEqual(mags[j],test_cat.magnitudeMasterList[i][j],10) i += 1 os.unlink("testStarsCartoon.txt")
def loadKuruczSEDs(self, subset=None): """ By default will load all seds in kurucz directory. The user can also define a subset of what's in the directory and load only those SEDs instead. Will skip over extraneous files in sed folder. @param [in] subset is the list of the subset of files wanted if one doesn't want all files in the kurucz directory. @param [out] sedList is the set of model SED spectra objects to be passed onto the matching routines. """ files = [] if subset is None: for fileName in os.listdir(self.kuruczDir): files.append(fileName) else: for fileName in subset: files.append(fileName) numFiles = len(files) numOn = 0 sedList = [] for fileName in files: if numOn % 100 == 0: print 'Loading %i of %i: Kurucz SEDs' % (numOn, numFiles) try: spec = Sed() spec.readSED_flambda(str(self.kuruczDir + '/' + fileName)) logZTimesTen, temp, gravity, fineTemp = [ x.split(".")[0] for x in fileName.split("_") ] if logZTimesTen[1] == 'm': spec.logZ = -1.0 * float(logZTimesTen[2:]) * 0.1 else: spec.logZ = float(logZTimesTen[2:]) * 0.1 spec.logg = float(gravity[1:]) * 0.1 spec.temp = float(fineTemp) spec.name = fileName except: continue sedList.append(spec) numOn += 1 return sedList
def loadwdSEDs(self, subset = None): """ By default will load all seds in wd directory. The user can also define a subset of what's in the directory and load only those SEDs instead. Will skip over extraneous files in sed folder. @param [in] subset is the list of the subset of files wanted if one doesn't want all files in the kurucz directory. @param [out] sedListH is the set of model SED spectra objects for Hydrogen WDs to be passed onto the matching routines. @param [out] sedListHE is the set of model SED spectra objects for Helium WDs to be passed onto the matching routines. """ files = [] if subset is None: for fileName in os.listdir(self.wdDir): files.append(fileName) else: for fileName in subset: files.append(fileName) numFiles = len(files) numOn = 0 sedListH = [] sedListHE = [] for fileName in files: if numOn % 100 == 0: print 'Loading %i of %i: WD SEDs' % (numOn, numFiles) try: spec = Sed() spec.readSED_flambda(str(self.wdDir + '/' + fileName)) spec.name = fileName if fileName.split("_")[1] == 'He': sedListHE.append(spec) else: sedListH.append(spec) except: continue numOn += 1 return sedListH, sedListHE
def testApplyIGM(self): """Test application of IGM from Lookup Tables to SED objects""" #Test that a warning comes up if input redshift is out of range and that no changes occurs to SED testSed = Sed() testSed.readSED_flambda(os.environ['SIMS_SED_LIBRARY_DIR'] + '/galaxySED/Inst.80E09.25Z.spec.gz') testFlambda = [] for fVal in testSed.flambda: testFlambda.append(fVal) testIGM = ApplyIGM() testIGM.initializeIGM() with warnings.catch_warnings(record=True) as wa: testIGM.applyIGM(1.1, testSed) self.assertEqual(len(wa), 1) self.assertTrue('IGM Lookup tables' in str(wa[-1].message)) np.testing.assert_equal(testFlambda, testSed.flambda) #Test that lookup table is read in correctly testTable15 = np.genfromtxt( str(os.environ['SIMS_SED_LIBRARY_DIR'] + '/igm/' + 'MeanLookupTable_zSource1.5.tbl')) np.testing.assert_equal(testTable15, testIGM.meanLookups['1.5']) #Test output by making sure that an incoming sed with flambda = 1.0 everywhere will return the #transmission values of the lookup table as its flambda output testSed.setSED(testSed.wavelen, flambda=np.ones(len(testSed.wavelen))) testIGM.applyIGM(1.5, testSed) testTable15Above300 = testTable15[np.where(testTable15[:, 0] >= 300.0)] testSed.resampleSED(wavelen_match=testTable15Above300[:, 0]) np.testing.assert_allclose(testTable15Above300[:, 1], testSed.flambda, 1e-4)
def loadwdSEDs(self, subset=None): """ By default will load all seds in wd directory. The user can also define a subset of what's in the directory and load only those SEDs instead. Will skip over extraneous files in sed folder. @param [in] subset is the list of the subset of files wanted if one doesn't want all files in the kurucz directory. @param [out] sedListH is the set of model SED spectra objects for Hydrogen WDs to be passed onto the matching routines. @param [out] sedListHE is the set of model SED spectra objects for Helium WDs to be passed onto the matching routines. """ files = [] if subset is None: for fileName in os.listdir(self.wdDir): files.append(fileName) else: for fileName in subset: files.append(fileName) numFiles = len(files) numOn = 0 sedListH = [] sedListHE = [] for fileName in files: if numOn % 100 == 0: print 'Loading %i of %i: WD SEDs' % (numOn, numFiles) try: spec = Sed() spec.readSED_flambda(str(self.wdDir + '/' + fileName)) spec.name = fileName if fileName.split("_")[1] == 'He': sedListHE.append(spec) else: sedListH.append(spec) except: continue numOn += 1 return sedListH, sedListHE
def testSystematicUncertainty(self): """ Test that systematic uncertainty is added correctly. """ sigmaSys = 0.002 m5 = [23.5, 24.3, 22.1, 20.0, 19.5, 21.7] photParams = PhotometricParameters(sigmaSys=sigmaSys) bandpassDict = BandpassDict.loadTotalBandpassesFromFiles() obs_metadata = ObservationMetaData(unrefractedRA=23.0, unrefractedDec=45.0, m5=m5, bandpassName=self.bandpasses) magnitudes = bandpassDict.magListForSed(self.starSED) skySeds = [] for i in range(len(self.bandpasses)): skyDummy = Sed() skyDummy.readSED_flambda(os.path.join(lsst.utils.getPackageDir("throughputs"), "baseline", "darksky.dat")) normalizedSkyDummy = setM5( obs_metadata.m5[self.bandpasses[i]], skyDummy, self.totalBandpasses[i], self.hardwareBandpasses[i], seeing=LSSTdefaults().seeing(self.bandpasses[i]), photParams=PhotometricParameters(), ) skySeds.append(normalizedSkyDummy) for i in range(len(self.bandpasses)): snr = calcSNR_sed( self.starSED, self.totalBandpasses[i], skySeds[i], self.hardwareBandpasses[i], seeing=LSSTdefaults().seeing(self.bandpasses[i]), photParams=PhotometricParameters(), ) testSNR, gamma = calcSNR_m5( numpy.array([magnitudes[i]]), [self.totalBandpasses[i]], numpy.array([m5[i]]), photParams=PhotometricParameters(sigmaSys=0.0), ) self.assertAlmostEqual(snr, testSNR[0], 10, msg="failed on calcSNR_m5 test %e != %e " % (snr, testSNR[0])) control = numpy.sqrt(numpy.power(magErrorFromSNR(testSNR), 2) + numpy.power(sigmaSys, 2))
def __init__(self, catsim_cat, om10_cat='twinkles_lenses_v2.fits', density_param=1.): """ Parameters ---------- catsim_cat: catsim catalog The results array from an instance catalog. om10_cat: optional, defaults to 'twinkles_tdc_rung4.fits fits file with OM10 catalog density_param: `np.float`, optioanl, defaults to 1.0 the fraction of eligible agn objects that become lensed and should be between 0.0 and 1.0. Returns ------- updated_catalog: A new results array with lens systems added. """ twinklesDir = getPackageDir('Twinkles') om10_cat = os.path.join(twinklesDir, 'data', om10_cat) self.catalog = catsim_cat # ****** THIS ASSUMES THAT THE ENVIRONMENT VARIABLE OM10_DIR IS SET ******* lensdb = om10.DB(catalog=om10_cat) self.lenscat = lensdb.lenses.copy() self.density_param = density_param self.bandpassDict = BandpassDict.loadTotalBandpassesFromFiles(bandpassNames=['i']) specFileStart = 'Burst' for key, val in sorted(iteritems(SpecMap.subdir_map)): if re.match(key, specFileStart): galSpecDir = str(val) galDir = str(getPackageDir('sims_sed_library') + '/' + galSpecDir + '/') self.LRG_name = 'Burst.25E09.1Z.spec' self.LRG = Sed() self.LRG.readSED_flambda(str(galDir + self.LRG_name)) #return #Calculate imsimband magnitudes of source galaxies for matching agn_sed = Sed() agn_fname = str(getPackageDir('sims_sed_library') + '/agnSED/agn.spec.gz') agn_sed.readSED_flambda(agn_fname) src_iband = self.lenscat['MAGI_IN'] self.src_mag_norm = [] for src in src_iband: self.src_mag_norm.append(matchBase().calcMagNorm([src], agn_sed, self.bandpassDict))
def testSignalToNoise(self): """ Test that calcSNR_m5 and calcSNR_sed give similar results """ defaults = LSSTdefaults() photParams = PhotometricParameters() totalDict, hardwareDict = BandpassDict.loadBandpassesFromFiles() skySED = Sed() skySED.readSED_flambda(os.path.join(lsst.utils.getPackageDir("throughputs"), "baseline", "darksky.dat")) m5 = [] for filt in totalDict: m5.append(calcM5(skySED, totalDict[filt], hardwareDict[filt], photParams, seeing=defaults.seeing(filt))) sedDir = lsst.utils.getPackageDir("sims_sed_library") sedDir = os.path.join(sedDir, "starSED", "kurucz") fileNameList = os.listdir(sedDir) numpy.random.seed(42) offset = numpy.random.random_sample(len(fileNameList)) * 2.0 for ix, name in enumerate(fileNameList): if ix > 100: break spectrum = Sed() spectrum.readSED_flambda(os.path.join(sedDir, name)) ff = spectrum.calcFluxNorm(m5[2] - offset[ix], totalDict.values()[2]) spectrum.multiplyFluxNorm(ff) magList = [] controlList = [] magList = [] for filt in totalDict: controlList.append( calcSNR_sed( spectrum, totalDict[filt], skySED, hardwareDict[filt], photParams, defaults.seeing(filt) ) ) magList.append(spectrum.calcMag(totalDict[filt])) testList, gammaList = calcSNR_m5( numpy.array(magList), numpy.array(totalDict.values()), numpy.array(m5), photParams ) for tt, cc in zip(controlList, testList): msg = "%e != %e " % (tt, cc) self.assertTrue(numpy.abs(tt / cc - 1.0) < 0.001, msg=msg)
def __init__(self, catsim_cat, om10_cat='twinkles_tdc_rung4.fits', density_param = 1.): """ Input: catsim_cat: The results array from an instance catalog. density_param: A float between 0. and 1.0 that determines the fraction of eligible agn objects that become lensed. Output: updated_catalog: A new results array with lens systems added. """ self.catalog = catsim_cat # ****** THIS ASSUMES THAT THE ENVIRONMENT VARIABLE OM10_DIR IS SET ******* lensdb = om10.DB(catalog=om10_cat) self.lenscat = lensdb.lenses.copy() self.density_param = density_param self.bandpassDict = BandpassDict.loadTotalBandpassesFromFiles(bandpassNames=['i']) specFileStart = 'Burst' for key, val in sorted(iteritems(SpecMap.subdir_map)): if re.match(key, specFileStart): galSpecDir = str(val) galDir = str(getPackageDir('sims_sed_library') + '/' + galSpecDir + '/') self.LRG_name = 'Burst.25E09.1Z.spec' self.LRG = Sed() self.LRG.readSED_flambda(str(galDir + self.LRG_name))
def setUp(self): starName = os.path.join(lsst.utils.getPackageDir('sims_sed_library'),defaultSpecMap['km20_5750.fits_g40_5790']) self.starSED = Sed() self.starSED.readSED_flambda(starName) imsimband = Bandpass() imsimband.imsimBandpass() fNorm = self.starSED.calcFluxNorm(22.0, imsimband) self.starSED.multiplyFluxNorm(fNorm) self.totalBandpasses = [] self.hardwareBandpasses = [] componentList = ['detector.dat', 'm1.dat', 'm2.dat', 'm3.dat', 'lens1.dat', 'lens2.dat', 'lens3.dat'] hardwareComponents = [] for c in componentList: hardwareComponents.append(os.path.join(lsst.utils.getPackageDir('throughputs'),'baseline',c)) self.bandpasses = ['u', 'g', 'r', 'i', 'z', 'y'] for b in self.bandpasses: filterName = os.path.join(lsst.utils.getPackageDir('throughputs'),'baseline','filter_%s.dat' % b) components = hardwareComponents + [filterName] bandpassDummy = Bandpass() bandpassDummy.readThroughputList(components) self.hardwareBandpasses.append(bandpassDummy) components = components + [os.path.join(lsst.utils.getPackageDir('throughputs'),'baseline','atmos.dat')] bandpassDummy = Bandpass() bandpassDummy.readThroughputList(components) self.totalBandpasses.append(bandpassDummy)
def setUp(self): starName = os.path.join(lsst.utils.getPackageDir("sims_sed_library"), defaultSpecMap["km20_5750.fits_g40_5790"]) self.starSED = Sed() self.starSED.readSED_flambda(starName) imsimband = Bandpass() imsimband.imsimBandpass() fNorm = self.starSED.calcFluxNorm(22.0, imsimband) self.starSED.multiplyFluxNorm(fNorm) self.totalBandpasses = [] self.hardwareBandpasses = [] componentList = ["detector.dat", "m1.dat", "m2.dat", "m3.dat", "lens1.dat", "lens2.dat", "lens3.dat"] hardwareComponents = [] for c in componentList: hardwareComponents.append(os.path.join(lsst.utils.getPackageDir("throughputs"), "baseline", c)) self.bandpasses = ["u", "g", "r", "i", "z", "y"] for b in self.bandpasses: filterName = os.path.join(lsst.utils.getPackageDir("throughputs"), "baseline", "filter_%s.dat" % b) components = hardwareComponents + [filterName] bandpassDummy = Bandpass() bandpassDummy.readThroughputList(components) self.hardwareBandpasses.append(bandpassDummy) components = components + [os.path.join(lsst.utils.getPackageDir("throughputs"), "baseline", "atmos.dat")] bandpassDummy = Bandpass() bandpassDummy.readThroughputList(components) self.totalBandpasses.append(bandpassDummy)
def loadmltSEDs(self, subset = None): """ By default will load all seds in mlt directory. The user can also define a subset of what's in the directory and load only those SEDs instead. Will skip over extraneous files in sed folder. @param [in] subset is the list of the subset of files wanted if one doesn't want all files in the mlt directory. @param [out] sedList is the set of model SED spectra objects to be passed onto the matching routines. """ files = [] if subset is None: for fileName in os.listdir(self.mltDir): files.append(fileName) else: for fileName in subset: files.append(fileName) numFiles = len(files) numOn = 0 sedList = [] for fileName in files: if numOn % 100 == 0: print 'Loading %i of %i: MLT SEDs' % (numOn, numFiles) try: spec = Sed() spec.readSED_flambda(str(self.mltDir + '/' + fileName)) spec.name = fileName except: continue sedList.append(spec) numOn += 1 return sedList
def testApplyIGM(self): """Test application of IGM from Lookup Tables to SED objects""" #Test that a warning comes up if input redshift is out of range and that no changes occurs to SED testSed = Sed() testSed.readSED_flambda(os.environ['SIMS_SED_LIBRARY_DIR'] + '/galaxySED/Inst.80E09.25Z.spec.gz') testFlambda = [] for fVal in testSed.flambda: testFlambda.append(fVal) testIGM = ApplyIGM() testIGM.initializeIGM() with warnings.catch_warnings(record=True) as wa: testIGM.applyIGM(1.1, testSed) self.assertEqual(len(wa), 1) self.assertTrue('IGM Lookup tables' in str(wa[-1].message)) np.testing.assert_equal(testFlambda, testSed.flambda) #Test that lookup table is read in correctly testTable15 = np.genfromtxt(str(os.environ['SIMS_SED_LIBRARY_DIR'] + '/igm/' + 'MeanLookupTable_zSource1.5.tbl')) np.testing.assert_equal(testTable15, testIGM.meanLookups['1.5']) #Test output by making sure that an incoming sed with flambda = 1.0 everywhere will return the #transmission values of the lookup table as its flambda output testSed.setSED(testSed.wavelen, flambda = np.ones(len(testSed.wavelen))) testIGM.applyIGM(1.5, testSed) testTable15Above300 = testTable15[np.where(testTable15[:,0] >= 300.0)] testSed.resampleSED(wavelen_match = testTable15Above300[:,0]) np.testing.assert_allclose(testTable15Above300[:,1], testSed.flambda, 1e-4)
def testInitializeIGM(self): "Test Initialization Method" #Make sure that if we initialize IGM with new inputs that it is initializing with them testIGM = ApplyIGM() testSed = Sed() testSed.readSED_flambda(os.environ['SIMS_SED_LIBRARY_DIR'] + '/galaxySED/Inst.80E09.25Z.spec.gz') testIGM.applyIGM(1.8, testSed) testZmin = 1.8 testZmax = 2.2 #Want new values for testing, #so make sure we are not just putting in the same values as are already there self.assertNotEqual(testZmin, testIGM.zMin) self.assertNotEqual(testZmax, testIGM.zMax) testIGM.initializeIGM(zMin = testZmin, zMax = testZmax) self.assertEqual(testZmin, testIGM.zMin) self.assertEqual(testZmax, testIGM.zMax)
def testCalcBasicColors(self): """Tests the calculation of the colors of an SED in given bandpasses.""" testUtils = matchBase() testSED = Sed() bandpassDir = os.path.join(lsst.utils.getPackageDir('throughputs'), 'sdss') testPhot = BandpassDict.loadTotalBandpassesFromFiles( self.filterList, bandpassDir=bandpassDir, bandpassRoot='sdss_') testSED.readSED_flambda(str(self.galDir + os.listdir(self.galDir)[0])) testMags = testPhot.magListForSed(testSED) testColors = [] for filtNum in range(0, len(self.filterList) - 1): testColors.append(testMags[filtNum] - testMags[filtNum + 1]) testOutput = testUtils.calcBasicColors([testSED], testPhot) np.testing.assert_equal([testColors], testOutput)
def testCalcBasicColors(self): """Tests the calculation of the colors of an SED in given bandpasses.""" testUtils = matchBase() testSED = Sed() testPhot = BandpassDict.loadTotalBandpassesFromFiles(self.filterList, bandpassDir = os.path.join(lsst.utils.getPackageDir('throughputs'),'sdss'), bandpassRoot = 'sdss_') testSED.readSED_flambda(str(self.galDir + os.listdir(self.galDir)[0])) testMags = testPhot.magListForSed(testSED) testColors = [] for filtNum in range(0, len(self.filterList)-1): testColors.append(testMags[filtNum] - testMags[filtNum+1]) testOutput = testUtils.calcBasicColors([testSED], testPhot) np.testing.assert_equal([testColors], testOutput)
def testPhotometricIndicesRaw(self): """ Use manMagCalc_list with specified indices on an Sed. Make sure that the appropriate magnitudes are or are not Nan """ starName = os.path.join(getPackageDir('sims_sed_library'), defaultSpecMap['km20_5750.fits_g40_5790']) starPhot = BandpassDict.loadTotalBandpassesFromFiles() testSed = Sed() testSed.readSED_flambda(starName) indices = [1, 3] mags = starPhot.magListForSed(testSed, indices=indices) np.testing.assert_equal(mags[0], np.NaN) self.assertFalse(np.isnan(mags[1]), msg='mags[1] is NaN; should not be') np.testing.assert_equal(mags[2], np.NaN) self.assertFalse(np.isnan(mags[3]), msg='mags[3] is NaN; should not be') np.testing.assert_equal(mags[4], np.NaN) np.testing.assert_equal(mags[5], np.NaN) self.assertEqual(len(mags), 6)
def loadmltSEDs(self, subset=None): """ By default will load all seds in mlt directory. The user can also define a subset of what's in the directory and load only those SEDs instead. Will skip over extraneous files in sed folder. @param [in] subset is the list of the subset of files wanted if one doesn't want all files in the mlt directory. @param [out] sedList is the set of model SED spectra objects to be passed onto the matching routines. """ files = [] if subset is None: for fileName in os.listdir(self.mltDir): files.append(fileName) else: for fileName in subset: files.append(fileName) numFiles = len(files) numOn = 0 sedList = [] for fileName in files: if numOn % 100 == 0: print 'Loading %i of %i: MLT SEDs' % (numOn, numFiles) try: spec = Sed() spec.readSED_flambda(str(self.mltDir + '/' + fileName)) spec.name = fileName except: continue sedList.append(spec) numOn += 1 return sedList
def testAlternateBandpassesGalaxies(self): """ the same as testAlternateBandpassesStars, but for galaxies """ obs_metadata_pointed=ObservationMetaData(mjd=50000.0, boundType='circle',unrefractedRA=0.0,unrefractedDec=0.0, boundLength=10.0) test_cat=cartoonGalaxies(self.galaxy,obs_metadata=obs_metadata_pointed) test_cat.write_catalog("testGalaxiesCartoon.txt") cartoonDir = os.getenv('SIMS_PHOTUTILS_DIR')+'/tests/cartoonSedTestData/' testBandPasses = {} keys = ['u','g','r','i','z'] bplist = [] for kk in keys: testBandPasses[kk] = Bandpass() testBandPasses[kk].readThroughput(os.path.join(cartoonDir,"test_bandpass_%s.dat" % kk)) bplist.append(testBandPasses[kk]) sedObj = Sed() phiArray, waveLenStep = sedObj.setupPhiArray(bplist) components = ['Bulge', 'Disk', 'Agn'] ct = 0 for cc in components: i = 0 for ss in test_cat.sedMasterDict[cc]: if ss.wavelen != None: ss.resampleSED(wavelen_match = bplist[0].wavelen) ss.flambdaTofnu() mags = -2.5*numpy.log10(numpy.sum(phiArray*ss.fnu, axis=1)*waveLenStep) - ss.zp for j in range(len(mags)): ct += 1 self.assertAlmostEqual(mags[j],test_cat.magnitudeMasterDict[cc][i][j],10) i += 1 self.assertTrue(ct>0) os.unlink("testGalaxiesCartoon.txt")
def testPhotometricIndicesRaw(self): """ Use manMagCalc_list with specified indices on an Sed. Make sure that the appropriate magnitudes are or are not Nan """ starName = os.path.join(lsst.utils.getPackageDir('sims_sed_library'),defaultSpecMap['km20_5750.fits_g40_5790']) starPhot = PhotometryStars() starPhot.loadTotalBandpassesFromFiles() testSed = Sed() testSed.readSED_flambda(starName) indices = [1,3] mags = starPhot.manyMagCalc_list(testSed, indices=indices) self.assertTrue(numpy.isnan(mags[0])) self.assertFalse(numpy.isnan(mags[1])) self.assertTrue(numpy.isnan(mags[2])) self.assertFalse(numpy.isnan(mags[3])) self.assertTrue(numpy.isnan(mags[4])) self.assertTrue(numpy.isnan(mags[5])) self.assertTrue(len(mags)==6)
def testInitializeIGM(self): "Test Initialization Method" #Make sure that if we initialize IGM with new inputs that it is initializing with them testIGM = ApplyIGM() testSed = Sed() testSed.readSED_flambda(os.environ['SIMS_SED_LIBRARY_DIR'] + '/galaxySED/Inst.80E09.25Z.spec.gz') testIGM.applyIGM(1.8, testSed) testZmin = 1.8 testZmax = 2.2 #Want new values for testing, #so make sure we are not just putting in the same values as are already there self.assertNotEqual(testZmin, testIGM.zMin) self.assertNotEqual(testZmax, testIGM.zMax) testIGM.initializeIGM(zMin=testZmin, zMax=testZmax) self.assertEqual(testZmin, testIGM.zMin) self.assertEqual(testZmax, testIGM.zMax)
def loadKuruczSEDs(self, subset = None): """ By default will load all seds in kurucz directory. The user can also define a subset of what's in the directory and load only those SEDs instead. Will skip over extraneous files in sed folder. @param [in] subset is the list of the subset of files wanted if one doesn't want all files in the kurucz directory. @param [out] sedList is the set of model SED spectra objects to be passed onto the matching routines. """ files = [] if subset is None: for fileName in os.listdir(self.kuruczDir): files.append(fileName) else: for fileName in subset: files.append(fileName) numFiles = len(files) numOn = 0 sedList = [] for fileName in files: if numOn % 100 == 0: print 'Loading %i of %i: Kurucz SEDs' % (numOn, numFiles) try: spec = Sed() spec.readSED_flambda(str(self.kuruczDir + '/' + fileName)) logZTimesTen, temp, gravity, fineTemp = [x.split(".")[0] for x in fileName.split("_")] if logZTimesTen[1] == 'm': spec.logZ = -1.0 * float(logZTimesTen[2:]) * 0.1 else: spec.logZ = float(logZTimesTen[2:]) * 0.1 spec.logg = float(gravity[1:]) * 0.1 spec.temp = float(fineTemp) spec.name = fileName except: continue sedList.append(spec) numOn += 1 return sedList
def testMatchToRestFrame(self): """Test that Galaxies with no effects added into catalog mags are matched correctly.""" rng = np.random.RandomState(42) galPhot = BandpassDict.loadTotalBandpassesFromFiles() imSimBand = Bandpass() imSimBand.imsimBandpass() testMatching = selectGalaxySED(galDir=self.testSpecDir) testSEDList = testMatching.loadBC03() testSEDNames = [] testMags = [] testMagNormList = [] magNormStep = 1 for testSED in testSEDList: getSEDMags = Sed() testSEDNames.append(testSED.name) getSEDMags.setSED(wavelen=testSED.wavelen, flambda=testSED.flambda) testMagNorm = np.round(rng.uniform(20.0, 22.0), magNormStep) testMagNormList.append(testMagNorm) fluxNorm = getSEDMags.calcFluxNorm(testMagNorm, imSimBand) getSEDMags.multiplyFluxNorm(fluxNorm) testMags.append(galPhot.magListForSed(getSEDMags)) # Also testing to make sure passing in non-default bandpasses works # Substitute in nan values to simulate incomplete data. testMags[0][1] = np.nan testMags[0][2] = np.nan testMags[0][4] = np.nan testMags[1][1] = np.nan testMatchingResults = testMatching.matchToRestFrame( testSEDList, testMags, bandpassDict=galPhot) self.assertEqual(None, testMatchingResults[0][0]) self.assertEqual(testSEDNames[1:], testMatchingResults[0][1:]) self.assertEqual(None, testMatchingResults[1][0]) np.testing.assert_almost_equal(testMagNormList[1:], testMatchingResults[1][1:], decimal=magNormStep) # Test Match Errors errMags = np.array( (testMags[2], testMags[2], testMags[2], testMags[2])) errMags[1, 1] += 1. # Total MSE will be 2/(5 colors) = 0.4 errMags[2, 0:2] = np.nan errMags[2, 3] += 1. # Total MSE will be 2/(3 colors) = 0.667 errMags[3, :] = None errSED = testSEDList[2] testMatchingResultsErrors = testMatching.matchToRestFrame( [errSED], errMags, bandpassDict=galPhot) np.testing.assert_almost_equal(np.array((0.0, 0.4, 2. / 3.)), testMatchingResultsErrors[2][0:3], decimal=3) self.assertEqual(None, testMatchingResultsErrors[2][3])
def loadBC03(self, subset=None): """ This loads the Bruzual and Charlot SEDs that are currently in the SIMS_SED_LIBRARY. If the user wants to use different SEDs another loading method can be created and used in place of this. @param [in] subset is the list of the subset of files in the galDir that the user can specify if using all the SEDs in the directory is not desired. @param [out] sedList is the set of model SED spectra objects to be passed onto the matching routines. """ files = [] if subset is None: for fileName in os.listdir(self.galDir): files.append(fileName) else: for fileName in subset: files.append(fileName) numFiles = len(files) numOn = 0 sedList = [] for fileName in files: if numOn % 100 == 0: print 'Loading %i of %i: BC Galaxy SEDs' % (numOn, numFiles) try: spec = Sed() spec.readSED_flambda(str(self.galDir + '/' + fileName)) spec.name = fileName fileNameAsList = fileName.split('.') spec.type = fileNameAsList[0] spec.age = float(fileNameAsList[1]) metallicity = fileNameAsList[2].split('Z')[0] #Final form is z/zSun spec.metallicity = float(metallicity) * (10**( (len(metallicity) - 1) * -1)) except: continue sedList.append(spec) numOn += 1 return sedList
def testInitializeIGM(self): "Test Initialization Method" # Make sure that if we initialize IGM with new inputs that it # is initializing with them testIGM = ApplyIGM() testSed = Sed() sedName = os.path.join(getPackageDir('sims_sed_library'), 'galaxySED') testSed.readSED_flambda(os.path.join(sedName, 'Burst.10E08.002Z.spec.gz')) testIGM.applyIGM(1.8, testSed) testZmin = 1.8 testZmax = 2.2 # Want new values for testing, # so make sure we are not just putting in the same values # as are already there self.assertNotEqual(testZmin, testIGM.zMin) self.assertNotEqual(testZmax, testIGM.zMax) testIGM.initializeIGM(zMin = testZmin, zMax = testZmax) self.assertEqual(testZmin, testIGM.zMin) self.assertEqual(testZmax, testIGM.zMax)
def testInitializeIGM(self): "Test Initialization Method" # Make sure that if we initialize IGM with new inputs that it # is initializing with them testIGM = ApplyIGM() testSed = Sed() sedName = os.path.join(getPackageDir('sims_sed_library'), 'galaxySED') testSed.readSED_flambda( os.path.join(sedName, 'Burst.10E08.002Z.spec.gz')) testIGM.applyIGM(1.8, testSed) testZmin = 1.8 testZmax = 2.2 # Want new values for testing, # so make sure we are not just putting in the same values # as are already there self.assertNotEqual(testZmin, testIGM.zMin) self.assertNotEqual(testZmax, testIGM.zMax) testIGM.initializeIGM(zMin=testZmin, zMax=testZmax) self.assertEqual(testZmin, testIGM.zMin) self.assertEqual(testZmax, testIGM.zMax)
class UncertaintyMixinTest(unittest.TestCase): def setUp(self): starName = os.path.join(getPackageDir('sims_sed_library'), defaultSpecMap['km20_5750.fits_g40_5790']) self.starSED = Sed() self.starSED.readSED_flambda(starName) imsimband = Bandpass() imsimband.imsimBandpass() fNorm = self.starSED.calcFluxNorm(22.0, imsimband) self.starSED.multiplyFluxNorm(fNorm) self.totalBandpasses = [] self.hardwareBandpasses = [] componentList = [ 'detector.dat', 'm1.dat', 'm2.dat', 'm3.dat', 'lens1.dat', 'lens2.dat', 'lens3.dat' ] hardwareComponents = [] for c in componentList: hardwareComponents.append( os.path.join(getPackageDir('throughputs'), 'baseline', c)) self.bandpasses = ['u', 'g', 'r', 'i', 'z', 'y'] for b in self.bandpasses: filterName = os.path.join(getPackageDir('throughputs'), 'baseline', 'filter_%s.dat' % b) components = hardwareComponents + [filterName] bandpassDummy = Bandpass() bandpassDummy.readThroughputList(components) self.hardwareBandpasses.append(bandpassDummy) components = components + [ os.path.join(getPackageDir('throughputs'), 'baseline', 'atmos.dat') ] bandpassDummy = Bandpass() bandpassDummy.readThroughputList(components) self.totalBandpasses.append(bandpassDummy)
def loadBC03(self, subset = None): """ This loads the Bruzual and Charlot SEDs that are currently in the SIMS_SED_LIBRARY. If the user wants to use different SEDs another loading method can be created and used in place of this. @param [in] subset is the list of the subset of files in the galDir that the user can specify if using all the SEDs in the directory is not desired. @param [out] sedList is the set of model SED spectra objects to be passed onto the matching routines. """ files = [] if subset is None: for fileName in os.listdir(self.galDir): files.append(fileName) else: for fileName in subset: files.append(fileName) numFiles = len(files) numOn = 0 sedList = [] for fileName in files: if numOn % 100 == 0: print 'Loading %i of %i: BC Galaxy SEDs' % (numOn, numFiles) try: spec = Sed() spec.readSED_flambda(str(self.galDir + '/' + fileName)) spec.name = fileName fileNameAsList = fileName.split('.') spec.type = fileNameAsList[0] spec.age = float(fileNameAsList[1]) metallicity = fileNameAsList[2].split('Z')[0] #Final form is z/zSun spec.metallicity = float(metallicity) * (10 ** ((len(metallicity)-1)*-1)) except: continue sedList.append(spec) numOn += 1 return sedList
def testMatchToRestFrame(self): """Test that Galaxies with no effects added into catalog mags are matched correctly.""" np.random.seed(42) galPhot = BandpassDict.loadTotalBandpassesFromFiles() imSimBand = Bandpass() imSimBand.imsimBandpass() testMatching = selectGalaxySED(galDir = self.testSpecDir) testSEDList = testMatching.loadBC03() testSEDNames = [] testMags = [] testMagNormList = [] magNormStep = 1 for testSED in testSEDList: getSEDMags = Sed() testSEDNames.append(testSED.name) getSEDMags.setSED(wavelen = testSED.wavelen, flambda = testSED.flambda) testMagNorm = np.round(np.random.uniform(20.0,22.0),magNormStep) testMagNormList.append(testMagNorm) fluxNorm = getSEDMags.calcFluxNorm(testMagNorm, imSimBand) getSEDMags.multiplyFluxNorm(fluxNorm) testMags.append(galPhot.magListForSed(getSEDMags)) #Also testing to make sure passing in non-default bandpasses works #Substitute in nan values to simulate incomplete data. testMags[0][1] = np.nan testMags[0][2] = np.nan testMags[0][4] = np.nan testMags[1][1] = np.nan testMatchingResults = testMatching.matchToRestFrame(testSEDList, testMags, bandpassDict = galPhot) self.assertEqual(None, testMatchingResults[0][0]) self.assertEqual(testSEDNames[1:], testMatchingResults[0][1:]) self.assertEqual(None, testMatchingResults[1][0]) np.testing.assert_almost_equal(testMagNormList[1:], testMatchingResults[1][1:], decimal = magNormStep) #Test Match Errors errMags = np.array((testMags[2], testMags[2], testMags[2], testMags[2])) errMags[1,1] += 1. #Total MSE will be 2/(5 colors) = 0.4 errMags[2, 0:2] = np.nan errMags[2, 3] += 1. #Total MSE will be 2/(3 colors) = 0.667 errMags[3, :] = None errSED = testSEDList[2] testMatchingResultsErrors = testMatching.matchToRestFrame([errSED], errMags, bandpassDict = galPhot) np.testing.assert_almost_equal(np.array((0.0, 0.4, 2./3.)), testMatchingResultsErrors[2][0:3], decimal = 3) self.assertEqual(None, testMatchingResultsErrors[2][3])
def testSEDCopyBasicColors(self): """Tests that when makeCopy=True in calcBasicColors the SED object is unchanged after calling and that colors are still accurately calculated""" testUtils = matchBase() testSED = Sed() copyTest = Sed() testPhot = BandpassDict.loadTotalBandpassesFromFiles(self.filterList, bandpassDir = os.path.join(lsst.utils.getPackageDir('throughputs'),'sdss'), bandpassRoot = 'sdss_') testSED.readSED_flambda(str(self.galDir + os.listdir(self.galDir)[0])) copyTest.setSED(wavelen = testSED.wavelen, flambda = testSED.flambda) testLambda = copyTest.wavelen[0] testMags = testPhot.magListForSed(testSED) testColors = [] for filtNum in range(0, len(self.filterList)-1): testColors.append(testMags[filtNum] - testMags[filtNum+1]) testOutput = testUtils.calcBasicColors([copyTest], testPhot, makeCopy=True) self.assertEqual(testLambda, copyTest.wavelen[0]) np.testing.assert_equal([testColors], testOutput)
def testApplyIGM(self): """Test application of IGM from Lookup Tables to SED objects""" # Test that a warning comes up if input redshift is out # of range and that no changes occurs to SED testSed = Sed() sedName = os.path.join(getPackageDir('sims_photUtils'), 'tests/cartoonSedTestData/galaxySed/') testSed.readSED_flambda(os.path.join(sedName, 'Burst.10E08.002Z.spec.gz')) testFlambda = [] for fVal in testSed.flambda: testFlambda.append(fVal) testIGM = ApplyIGM() testIGM.initializeIGM() with warnings.catch_warnings(record=True) as wa: testIGM.applyIGM(1.1, testSed) self.assertEqual(len(wa), 1) self.assertIn('IGM Lookup tables', str(wa[-1].message)) np.testing.assert_equal(testFlambda, testSed.flambda) # Test that lookup table is read in correctly testTable15 = np.genfromtxt(str(getPackageDir('sims_photUtils') + '/python/lsst/sims/photUtils/igm_tables/' + 'MeanLookupTable_zSource1.5.tbl.gz')) np.testing.assert_equal(testTable15, testIGM.meanLookups['1.5']) # Test output by making sure that an incoming sed # with flambda = 1.0 everywhere will return the # transmission values of the lookup table as its # flambda output testSed.setSED(testSed.wavelen, flambda=np.ones(len(testSed.wavelen))) testIGM.applyIGM(1.5, testSed) testTable15Above300 = testTable15[np.where(testTable15[:, 0] >= 300.0)] testSed.resampleSED(wavelen_match = testTable15Above300[:, 0]) np.testing.assert_allclose(testTable15Above300[:, 1], testSed.flambda, 1e-4)
def testApplyIGM(self): """Test application of IGM from Lookup Tables to SED objects""" # Test that a warning comes up if input redshift is out # of range and that no changes occurs to SED testSed = Sed() sedName = os.path.join(getPackageDir('sims_sed_library'), 'galaxySED') testSed.readSED_flambda(os.path.join(sedName, 'Burst.10E08.002Z.spec.gz')) testFlambda = [] for fVal in testSed.flambda: testFlambda.append(fVal) testIGM = ApplyIGM() testIGM.initializeIGM() with warnings.catch_warnings(record=True) as wa: testIGM.applyIGM(1.1, testSed) self.assertEqual(len(wa), 1) self.assertIn('IGM Lookup tables', str(wa[-1].message)) np.testing.assert_equal(testFlambda, testSed.flambda) # Test that lookup table is read in correctly testTable15 = np.genfromtxt(str(getPackageDir('sims_catUtils') + '/python/lsst/sims/catUtils/IGM/igm_tables/' + 'MeanLookupTable_zSource1.5.tbl.gz')) np.testing.assert_equal(testTable15, testIGM.meanLookups['1.5']) # Test output by making sure that an incoming sed # with flambda = 1.0 everywhere will return the # transmission values of the lookup table as its # flambda output testSed.setSED(testSed.wavelen, flambda=np.ones(len(testSed.wavelen))) testIGM.applyIGM(1.5, testSed) testTable15Above300 = testTable15[np.where(testTable15[:, 0] >= 300.0)] testSed.resampleSED(wavelen_match = testTable15Above300[:, 0]) np.testing.assert_allclose(testTable15Above300[:, 1], testSed.flambda, 1e-4)
def calcMagNorm(self, objectMags, sedObj, bandpassDict, mag_error = None, redshift = None, filtRange = None): """ This will find the magNorm value that gives the closest match to the magnitudes of the object using the matched SED. Uses scipy.optimize.leastsq to find the values of fluxNorm that minimizes the function: ((flux_obs - (fluxNorm*flux_model))/flux_error)**2. @param [in] objectMags are the magnitude values for the object with extinction matching that of the SED object. In the normal case using the selectSED routines above it will be dereddened mags. @param [in] sedObj is an Sed class instance that is set with the wavelength and flux of the matched SED @param [in] bandpassDict is a BandpassDict class instance with the Bandpasses set to those for the magnitudes given for the catalog object @param [in] mag_error are provided error values for magnitudes in objectMags. If none provided then this defaults to 1.0. This should be an array of the same length as objectMags. @param [in] redshift is the redshift of the object if the magnitude is observed @param [in] filtRange is a selected range of filters specified by their indices in the bandpassList to match up against. Used when missing data in some magnitude bands. @param [out] bestMagNorm is the magnitude normalization for the given magnitudes and SED """ import scipy.optimize as opt sedTest = Sed() sedTest.setSED(sedObj.wavelen, flambda = sedObj.flambda) if redshift is not None: sedTest.redshiftSED(redshift) imSimBand = Bandpass() imSimBand.imsimBandpass() zp = -2.5*np.log10(3631) #Note using default AB zeropoint flux_obs = np.power(10,(objectMags + zp)/(-2.5)) sedTest.resampleSED(wavelen_match=bandpassDict.values()[0].wavelen) sedTest.flambdaTofnu() flux_model = sedTest.manyFluxCalc(bandpassDict.phiArray, bandpassDict.wavelenStep) if filtRange is not None: flux_obs = flux_obs[filtRange] flux_model = flux_model[filtRange] if mag_error is None: flux_error = np.ones(len(flux_obs)) else: flux_error = np.abs(flux_obs*(np.log(10)/(-2.5))*mag_error) bestFluxNorm = opt.leastsq(lambda x: ((flux_obs - (x*flux_model))/flux_error), 1.0)[0][0] sedTest.multiplyFluxNorm(bestFluxNorm) bestMagNorm = sedTest.calcMag(imSimBand) return bestMagNorm
def read_asteroids_reflectance(dataDir='.'): # Read the sun's spectrum. sun = Sed() sun.readSED_flambda('kurucz_sun') # Read the asteroid reflectance spectra. allfiles = os.listdir(dataDir) asteroidDtype = numpy.dtype([ ('wavelength', numpy.float), ('A', numpy.float), ('A_sig', numpy.float), ('B', numpy.float), ('B_sig', numpy.float), ('C', numpy.float), ('C_sig', numpy.float), ('Cb', numpy.float), ('Cb_sig', numpy.float), ('Cg', numpy.float), ('Cg_sig', numpy.float), ('Cgh', numpy.float), ('Cgh_sig', numpy.float), ('Ch', numpy.float), ('Ch_sig', numpy.float), ('D', numpy.float), ('D_sig', numpy.float), ('K', numpy.float), ('K_sig', numpy.float), ('L', numpy.float), ('L_sig', numpy.float), ('O', numpy.float), ('O_sig', numpy.float), ('Q', numpy.float), ('Q_sig', numpy.float), ('R', numpy.float), ('R_sig', numpy.float), ('S', numpy.float), ('S_sig', numpy.float), ('Sa', numpy.float), ('Sa_sig', numpy.float), ('Sq', numpy.float), ('Sq_sig', numpy.float), ('Sr', numpy.float), ('Sr_sig', numpy.float), ('Sv', numpy.float), ('Sv_sig', numpy.float), ('T', numpy.float), ('T_sig', numpy.float), ('V', numpy.float), ('V_sig', numpy.float), ('X', numpy.float), ('X_sig', numpy.float), ('Xc', numpy.float), ('Xc_sig', numpy.float), ('Xe', numpy.float), ('Xe_sig', numpy.float), ('Xk', numpy.float), ('Xk_sig', numpy.float), ]) data = numpy.loadtxt(os.path.join(dataDir, 'meanspectra.tab'), dtype=asteroidDtype) data['wavelength'] *= 1000.0 #because spectra are in microns wavelen_step = min( numpy.diff(data['wavelength']).min(), numpy.diff(sun.wavelen).min()) wavelen = numpy.arange(sun.wavelen[0], data['wavelength'][-1], wavelen_step) ast_reflect = {} for a in data.dtype.names: if a == 'wavelength' or a[-3:] == 'sig': continue # Read the basic reflectance data ast_reflect[a] = Sed(wavelen=data['wavelength'], flambda=data[a]) # And now add an extrapolation to the blue end. # Binzel cuts off at 450nm. condition = ((ast_reflect[a].wavelen >= 450) & (ast_reflect[a].wavelen < 700)) x = ast_reflect[a].wavelen[condition] y = ast_reflect[a].flambda[condition] p = numpy.polyfit(x, y, deg=2) condition = (wavelen < 450) flambda = numpy.zeros(len(wavelen), 'float') interpolated = numpy.polyval(p, wavelen[condition]) flambda[condition] = [ii if ii > 0.0 else 0.0 for ii in interpolated] condition = (wavelen >= 450) flambda[condition] = numpy.interp(wavelen[condition], ast_reflect[a].wavelen, ast_reflect[a].flambda) ast_reflect[a] = Sed(wavelen, flambda) ast = {} for a in ast_reflect: ast[a] = sun.multiplySED(ast_reflect[a], wavelen_step=wavelen_step) for a in ast: name = a + '.dat' normalizedSed = Sed(wavelen=ast[a].wavelen, flambda=ast[a].flambda) norm = numpy.interp(500.0, normalizedSed.wavelen, normalizedSed.flambda) normalizedSed.multiplyFluxNorm(1.0 / norm) normalizedSed.writeSED( name, print_header='21 April 2015; normalized to flambda=1 at 500nm') return ast_reflect, sun, ast
def matchToObserved(self, sedList, catMags, catRedshifts, catRA = None, catDec = None, mag_error = None, bandpassDict = None, dzAcc = 2, reddening = True, extCoeffs = (4.239, 3.303, 2.285, 1.698, 1.263)): """ This will find the closest match to the magnitudes of a galaxy catalog if those magnitudes are in the observed frame and can correct for reddening from within the milky way as well if needed. In order to make things faster it first calculates colors for all model SEDs at redshifts between the minimum and maximum redshifts of the catalog objects provided with a grid spacing in redshift defined by the parameter dzAcc. Objects without magnitudes in at least two adjacent bandpasses will return as none and print out a message. @param [in] sedList is the set of spectral objects from the models SEDs provided by loadBC03 or other custom loader routine. @param [in] catMags is an array of the magnitudes of catalog objects to be matched with a model SED. It should be organized so that there is one object's magnitudes along each row. @param [in] catRedshifts is an array of the redshifts of each catalog object. @param [in] catRA is an array of the RA positions for each catalog object. @param [in] catDec is an array of the Dec position for each catalog object. @param [in] mag_error are provided error values for magnitudes in objectMags. If none provided then this defaults to 1.0. This should be an array of the same size as catMags. @param [in] bandpassDict is a BandpassDict with which to calculate magnitudes. If left equal to None it will by default load the SDSS [u,g,r,i,z] bandpasses and therefore agree with default extCoeffs. @param [in] dzAcc is the number of decimal places you want to use when building the redshift grid. For example, dzAcc = 2 will create a grid between the minimum and maximum redshifts with colors calculated at every 0.01 change in redshift. @param [in] reddening is a boolean that determines whether to correct catalog magnitudes for dust in the milky way. By default, it is True. If true, this uses calculateEBV from EBV.py to find an EBV value for the object's ra and dec coordinates and then uses the coefficients provided by extCoeffs which should come from Schlafly and Finkbeiner (2011) for the correct filters and in the same order as provided in bandpassDict. If false, this means it will not run the dereddening procedure. @param [in] extCoeffs are the Schlafly and Finkbeiner (2011) (ApJ, 737, 103) coefficients for the given filters from bandpassDict and need to be in the same order as bandpassDict. The default given are the SDSS [u,g,r,i,z] values. @param [out] sedMatches is a list with the name of a model SED that matches most closely to each object in the catalog. @param [out] magNormMatches are the magnitude normalizations for the given magnitudes and matched SED. @param [out] matchErrors contains the Mean Squared Error between the colors of each object and the colors of the matched SED. """ #Set up photometry to calculate model Mags if bandpassDict is None: galPhot = BandpassDict.loadTotalBandpassesFromFiles(['u','g','r','i','z'], bandpassDir = os.path.join(lsst.utils.getPackageDir('throughputs'),'sdss'), bandpassRoot = 'sdss_') else: galPhot = bandpassDict #Calculate ebv from ra, dec coordinates if needed if reddening == True: #Check that catRA and catDec are included if catRA is None or catDec is None: raise RuntimeError("Reddening is True, but catRA and catDec are not included.") calcEBV = ebv() raDec = np.array((catRA,catDec)) #If only matching one object need to reshape for calculateEbv if len(raDec.shape) == 1: raDec = raDec.reshape((2,1)) ebvVals = calcEBV.calculateEbv(equatorialCoordinates = raDec) objMags = self.deReddenMags(ebvVals, catMags, extCoeffs) else: objMags = catMags minRedshift = np.round(np.min(catRedshifts), dzAcc) maxRedshift = np.round(np.max(catRedshifts), dzAcc) dz = np.power(10., (-1*dzAcc)) redshiftRange = np.round(np.arange(minRedshift - dz, maxRedshift + (2*dz), dz), dzAcc) numRedshifted = 0 sedMatches = [None] * len(catRedshifts) magNormMatches = [None] * len(catRedshifts) matchErrors = [None] * len(catRedshifts) redshiftIndex = np.argsort(catRedshifts) numOn = 0 notMatched = 0 lastRedshift = -100 print 'Starting Matching. Arranged by redshift value.' for redshift in redshiftRange: if numRedshifted % 10 == 0: print '%i out of %i redshifts gone through' % (numRedshifted, len(redshiftRange)) numRedshifted += 1 colorSet = [] for galSpec in sedList: sedColors = [] fileSED = Sed() fileSED.setSED(wavelen = galSpec.wavelen, flambda = galSpec.flambda) fileSED.redshiftSED(redshift) sedColors = self.calcBasicColors([fileSED], galPhot, makeCopy = True) colorSet.append(sedColors) colorSet = np.transpose(colorSet) for currentIndex in redshiftIndex[numOn:]: matchMags = objMags[currentIndex] if lastRedshift < np.round(catRedshifts[currentIndex],dzAcc) <= redshift: colorRange = np.arange(0, len(galPhot)-1) matchColors = [] for colorNum in colorRange: matchColors.append(matchMags[colorNum] - matchMags[colorNum+1]) #This is done to handle objects with incomplete magnitude data filtNums = np.arange(0, len(galPhot)) if np.isnan(np.amin(matchColors))==True: colorRange = np.where(np.isnan(matchColors)==False)[0] filtNums = np.unique([colorRange, colorRange+1]) #Pick right filters in calcMagNorm if len(colorRange) == 0: print 'Could not match object #%i. No magnitudes for two adjacent bandpasses.' \ % (currentIndex) notMatched += 1 #Don't need to assign 'None' here in result array, b/c 'None' is default value else: distanceArray = [np.zeros(len(sedList))] for colorNum in colorRange: distanceArray += np.power((colorSet[colorNum] - matchColors[colorNum]),2) matchedSEDNum = np.nanargmin(distanceArray) sedMatches[currentIndex] = sedList[matchedSEDNum].name magNormVal = self.calcMagNorm(np.array(matchMags), sedList[matchedSEDNum], galPhot, mag_error = mag_error, redshift = catRedshifts[currentIndex], filtRange = filtNums) magNormMatches[currentIndex] = magNormVal matchErrors[currentIndex] = (distanceArray[0,matchedSEDNum]/len(colorRange)) numOn += 1 else: break lastRedshift = redshift print 'Done Matching. Matched %i of %i catalog objects to SEDs' % (len(catMags)-notMatched, len(catMags)) if notMatched > 0: print '%i objects did not get matched.' % (notMatched) return sedMatches, magNormMatches, matchErrors
def loadGalfast(self, filenameList, outFileList, sEDPath = None, kuruczPath = None, mltPath = None, wdPath = None, kuruczSubset = None, mltSubset = None, wdSubset = None, chunkSize = 10000): """ This is customized for the outputs we currently need for the purposes of consistent output It will read in a galfast output file and output desired values for database input into a file @param [in] filenameList is a list of the galfast output files that will be loaded and processed. Can process fits, gzipped, or txt output from galfast. @param [in] outFileList is a list of the names of the output files that will be created. If gzipped output is desired simply write the filenames with .gz at the end. @param [in] kuruczPath is a place to specify a path to kurucz SED files @param [in] mltPath is the same as kuruczPath except that it specifies a directory for the mlt SEDs @param [in] wdPath is the same as the previous two except that it specifies a path to a white dwarf SED directory. @param [in] kuruczSubset is a list which provides a subset of the kurucz files within the kurucz folder that one wants to use @param [in] mltSubset is a list which provides a subset of the mlt files within the mlt folder that one wants to use @param [in] wdSubset is a list which provides a subset of the wd files within the wd folder that one wants to use @param [in] chunkSize is the size of chunks of lines to be read from the catalog at one time. """ for filename in filenameList: #Make sure input file exists and is readable format before doing anything else if os.path.isfile(filename) == False: raise RuntimeError('*** File does not exist') #Process various possible galfast outputs if filename.endswith(('.txt', '.gz', '.fits')): continue else: raise RuntimeError(str('*** Unsupported File Format in file: ' + str(filename))) #If all files exist and are in proper formats then load seds selectStarSED0 = selectStarSED(kuruczDir=kuruczPath, mltDir=mltPath, wdDir=wdPath) if kuruczSubset is None: kuruczList = selectStarSED0.loadKuruczSEDs() else: kuruczList = selectStarSED0.loadKuruczSEDs(subset = kuruczSubset) #Only need one dictionary since none of the names overlap positionDict = {} for kNum, kuruczSED in enumerate(kuruczList): positionDict[kuruczSED.name] = kNum if mltSubset is None: mltList = selectStarSED0.loadmltSEDs() else: mltList = selectStarSED0.loadmltSEDs(subset = mltSubset) for mltNum, mltSED in enumerate(mltList): positionDict[mltSED.name] = mltNum if wdSubset is None: wdListH, wdListHE = selectStarSED0.loadwdSEDs() else: wdListH, wdListHE = selectStarSED0.loadwdSEDs(subset = wdSubset) for hNum, hSED in enumerate(wdListH): positionDict[hSED.name] = hNum for heNum, heSED in enumerate(wdListHE): positionDict[heSED.name] = heNum #For adding/subtracting extinction when calculating colors #Numbers below come from Schlafly and Finkbeiner (2011) (ApJ, 737, 103) #normalized by SDSS r mag value sdssExtCoeffs = [1.8551, 1.4455, 1.0, 0.7431, 0.5527] lsstExtCoeffs = [1.8140, 1.4166, 0.9947, 0.7370, 0.5790, 0.4761] sdssPhot = BandpassDict.loadTotalBandpassesFromFiles(['u','g','r','i','z'], bandpassDir = os.path.join(lsst.utils.getPackageDir('throughputs'), 'sdss'), bandpassRoot = 'sdss_') #Load Bandpasses for LSST colors to get colors from matched SEDs lsstFilterList = ('u', 'g', 'r', 'i', 'z', 'y') lsstPhot = BandpassDict.loadTotalBandpassesFromFiles(lsstFilterList) imSimBand = Bandpass() imSimBand.imsimBandpass() #Calculate colors and add them to the SED objects kuruczColors = selectStarSED0.calcBasicColors(kuruczList, sdssPhot) mltColors = selectStarSED0.calcBasicColors(mltList, sdssPhot) hColors = selectStarSED0.calcBasicColors(wdListH, sdssPhot) heColors = selectStarSED0.calcBasicColors(wdListHE, sdssPhot) listDict = {'kurucz':kuruczList, 'mlt':mltList, 'H':wdListH, 'HE':wdListHE} colorDict = {'kurucz':kuruczColors, 'mlt':mltColors, 'H':hColors, 'HE':heColors} for filename, outFile in zip(filenameList, outFileList): if filename.endswith('.txt'): galfastIn = open(filename, 'rt') inFits = False gzFile = False num_lines = sum(1 for line in open(filename)) elif filename.endswith('.gz'): galfastIn = gzip.open(filename, 'rt') inFits = False gzFile = True num_lines = sum(1 for line in gzip.open(filename)) elif filename.endswith('fits'): hdulist = fits.open(filename) galfastIn = hdulist[1].data num_lines = len(galfastIn) gzFile = False inFits = True if outFile.endswith('.txt'): fOut = open(outFile, 'wt') elif outFile.endswith('.gz'): fOut = gzip.open(outFile, 'wt') fOut.write('#oID, ra, dec, gall, galb, coordX, coordY, coordZ, sEDName, magNorm, ' +\ 'LSSTugrizy, SDSSugriz, absSDSSr, pmRA, pmDec, vRad, pml, pmb, vRadlb, ' +\ 'vR, vPhi, vZ, FeH, pop, distKpc, ebv, ebvInf\n') header_length = 0 numChunks = 0 if inFits == False: galfastDict = self.parseGalfast(galfastIn.readline()) header_length += 1 header_status = True while header_status == True: newLine = galfastIn.readline() if newLine[0] != '#': header_status = False else: header_length += 1 print('Total objects = %i' % (num_lines - header_length)) numChunks = ((num_lines-header_length)//chunkSize) + 1 for chunk in range(0,numChunks): if chunk == numChunks-1: lastChunkSize = (num_lines - header_length) % chunkSize readSize = lastChunkSize else: readSize = chunkSize oID = np.arange(readSize*chunk, readSize*(chunk+1)) if inFits: starData = galfastIn[readSize*chunk:(readSize*chunk + readSize)] sDSS = starData.field('SDSSugriz') gall, galb = np.transpose(starData.field('lb')) ra, dec = np.transpose(starData.field('radec')) coordX, coordY, coordZ = np.transpose(starData.field('XYZ')) DM = starData.field('DM') absSDSSr = starData.field('absSDSSr') pop = starData.field('comp') FeH = starData.field('FeH') vR, vPhi, vZ = np.transpose(starData.field('vcyl')) pml, pmb, vRadlb = np.transpose(starData.field('pmlb')) pmRA, pmDec, vRad = np.transpose(starData.field('pmradec')) am = starData.field('Am') amInf = starData.field('AmInf') sdssPhotoFlags = starData.field('SDSSugrizPhotoFlags') else: if gzFile == False: with open(filename) as t_in: starData = np.loadtxt(itertools.islice(t_in,((readSize*chunk)+header_length), ((readSize*(chunk+1))+header_length))) else: with gzip.open(filename) as t_in: starData = np.loadtxt(itertools.islice(t_in,((readSize*chunk)+header_length), ((readSize*(chunk+1))+header_length))) starData = np.transpose(starData) gall = starData[galfastDict['l']] galb = starData[galfastDict['b']] ra = starData[galfastDict['ra']] dec = starData[galfastDict['dec']] coordX = starData[galfastDict['X']] coordY = starData[galfastDict['Y']] coordZ = starData[galfastDict['Z']] DM = starData[galfastDict['DM']] absSDSSr = starData[galfastDict['absSDSSr']] pop = starData[galfastDict['comp']] FeH = starData[galfastDict['FeH']] vR = starData[galfastDict['Vr']] vPhi = starData[galfastDict['Vphi']] vZ = starData[galfastDict['Vz']] pml = starData[galfastDict['pml']] pmb = starData[galfastDict['pmb']] vRadlb = starData[galfastDict['vRadlb']] pmRA = starData[galfastDict['pmra']] pmDec = starData[galfastDict['pmdec']] vRad = starData[galfastDict['vRad']] am = starData[galfastDict['Am']] amInf = starData[galfastDict['AmInf']] sDSS = np.transpose(starData[galfastDict['SDSSu']:galfastDict['SDSSz']+1]) sDSSPhotoFlags = starData[galfastDict['SDSSPhotoFlags']] #End of input, now onto processing and output sDSSunred = selectStarSED0.deReddenMags(am, sDSS, sdssExtCoeffs) if readSize == 1: ra = np.array([ra]) dec = np.array([dec]) """ Info about the following population cuts: From Zeljko: "This color corresponds to the temperature (roughly spectral type M0) where Kurucz models become increasingly bad, and thus we switch to empirical SEDs (the problem is that for M and later stars, the effective surface temperature is low enough for molecules to form, and their opacity is too complex to easily model, especially TiO)." """ mIn = np.where(((pop < 10) | (pop >= 20)) & (sDSSunred[:,2] - sDSSunred[:,3] > 0.59)) kIn = np.where(((pop < 10) | (pop >= 20)) & (sDSSunred[:,2] - sDSSunred[:,3] <= 0.59)) hIn = np.where((pop >= 10) & (pop < 15)) heIn = np.where((pop >= 15) & (pop < 20)) sEDNameK, magNormK, matchErrorK = selectStarSED0.findSED(listDict['kurucz'], sDSSunred[kIn], ra[kIn], dec[kIn], reddening = False, colors = colorDict['kurucz']) sEDNameM, magNormM, matchErrorM = selectStarSED0.findSED(listDict['mlt'], sDSSunred[mIn], ra[mIn], dec[mIn], reddening = False, colors = colorDict['mlt']) sEDNameH, magNormH, matchErrorH = selectStarSED0.findSED(listDict['H'], sDSSunred[hIn], ra[hIn], dec[hIn], reddening = False, colors = colorDict['H']) sEDNameHE, magNormHE, matchErrorHE = selectStarSED0.findSED(listDict['HE'], sDSSunred[heIn], ra[heIn], dec[heIn], reddening = False, colors = colorDict['HE']) chunkNames = np.empty(readSize, dtype = 'S32') chunkTypes = np.empty(readSize, dtype = 'S8') chunkMagNorms = np.zeros(readSize) chunkMatchErrors = np.zeros(readSize) chunkNames[kIn] = sEDNameK chunkTypes[kIn] = 'kurucz' chunkMagNorms[kIn] = magNormK chunkMatchErrors[kIn] = matchErrorK chunkNames[mIn] = sEDNameM chunkTypes[mIn] = 'mlt' chunkMagNorms[mIn] = magNormM chunkMatchErrors[mIn] = matchErrorM chunkNames[hIn] = sEDNameH chunkTypes[hIn] = 'H' chunkMagNorms[hIn] = magNormH chunkMatchErrors[hIn] = matchErrorH chunkNames[heIn] = sEDNameHE chunkTypes[heIn] = 'HE' chunkMagNorms[heIn] = magNormHE chunkMatchErrors[heIn] = matchErrorHE lsstMagsUnred = [] for sedName, sedType, magNorm, matchError in zip(chunkNames.astype(str), chunkTypes.astype(str), chunkMagNorms, chunkMatchErrors): testSED = Sed() testSED.setSED(listDict[sedType][positionDict[sedName]].wavelen, flambda = listDict[sedType][positionDict[sedName]].flambda) fluxNorm = testSED.calcFluxNorm(magNorm, imSimBand) testSED.multiplyFluxNorm(fluxNorm) lsstMagsUnred.append(lsstPhot.magListForSed(testSED)) #If the extinction value is negative then it will add the reddening back in lsstMags = selectStarSED0.deReddenMags((-1.0*am), lsstMagsUnred, lsstExtCoeffs) distKpc = self.convDMtoKpc(DM) ebv = am / 2.285 #From Schlafly and Finkbeiner 2011, (ApJ, 737, 103) for sdssr ebvInf = amInf / 2.285 for line in range(0, readSize): outFmt = '%i,%3.7f,%3.7f,%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%s,' +\ '%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%3.7f,%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%i,%3.7f,%3.7f,%3.7f\n' if readSize == 1: if inFits == True: sDSS = sDSS[0] outDat = (oID, ra[line], dec[line], gall, galb, coordX, coordY, coordZ, chunkNames, chunkMagNorms, chunkMatchErrors, lsstMags[line][0], lsstMags[line][1], lsstMags[line][2], lsstMags[line][3], lsstMags[line][4], lsstMags[line][5], sDSS[0], sDSS[1], sDSS[2], sDSS[3], sDSS[4], absSDSSr, pmRA, pmDec, vRad, pml, pmb, vRadlb, vR, vPhi, vZ, FeH, pop, distKpc, ebv, ebvInf) else: outDat = (oID[line], ra[line], dec[line], gall[line], galb[line], coordX[line], coordY[line], coordZ[line], chunkNames[line], chunkMagNorms[line], chunkMatchErrors[line], lsstMags[line][0], lsstMags[line][1], lsstMags[line][2], lsstMags[line][3], lsstMags[line][4], lsstMags[line][5], sDSS[line][0], sDSS[line][1], sDSS[line][2], sDSS[line][3], sDSS[line][4], absSDSSr[line], pmRA[line], pmDec[line], vRad[line], pml[line], pmb[line], vRadlb[line], vR[line], vPhi[line], vZ[line], FeH[line], pop[line], distKpc[line], ebv[line], ebvInf[line]) fOut.write(outFmt % outDat) print('Chunk Num Done = %i out of %i' % (chunk+1, numChunks))
def testCalcMagNorm(self): """Tests the calculation of magnitude normalization for an SED with the given magnitudes in the given bandpasses.""" testUtils = matchBase() bandpassDir = os.path.join(lsst.utils.getPackageDir('throughputs'), 'sdss') testPhot = BandpassDict.loadTotalBandpassesFromFiles(self.filterList, bandpassDir = bandpassDir, bandpassRoot = 'sdss_') unChangedSED = Sed() unChangedSED.readSED_flambda(str(self.galDir + os.listdir(self.galDir)[0])) imSimBand = Bandpass() imSimBand.imsimBandpass() testSED = Sed() testSED.setSED(unChangedSED.wavelen, flambda = unChangedSED.flambda) magNorm = 20.0 redVal = 0.1 testSED.redshiftSED(redVal) fluxNorm = testSED.calcFluxNorm(magNorm, imSimBand) testSED.multiplyFluxNorm(fluxNorm) sedMags = testPhot.magListForSed(testSED) stepSize = 0.001 testMagNorm = testUtils.calcMagNorm(sedMags, unChangedSED, testPhot, redshift = redVal) # Test adding in mag_errors. If an array of np.ones is passed in we should get same result testMagNormWithErr = testUtils.calcMagNorm(sedMags, unChangedSED, testPhot, mag_error = np.ones(len(sedMags)), redshift = redVal) # Also need to add in test for filtRange sedMagsIncomp = sedMags sedMagsIncomp[1] = None filtRangeTest = [0, 2, 3, 4] testMagNormFiltRange = testUtils.calcMagNorm(sedMagsIncomp, unChangedSED, testPhot, redshift = redVal, filtRange = filtRangeTest) self.assertAlmostEqual(magNorm, testMagNorm, delta = stepSize) self.assertAlmostEqual(magNorm, testMagNormWithErr, delta = stepSize) self.assertAlmostEqual(magNorm, testMagNormFiltRange, delta = stepSize)
def testAlternateBandpassesStars(self): """ This will test our ability to do photometry using non-LSST bandpasses. It will first calculate the magnitudes using the getters in cartoonPhotometryStars. It will then load the alternate bandpass files 'by hand' and re-calculate the magnitudes and make sure that the magnitude values agree. This is guarding against the possibility that some default value did not change and the code actually ended up loading the LSST bandpasses. """ bandpassDir = os.path.join(lsst.utils.getPackageDir('sims_photUtils'), 'tests', 'cartoonSedTestData') cartoon_dict = BandpassDict.loadTotalBandpassesFromFiles(['u', 'g', 'r', 'i', 'z'], bandpassDir=bandpassDir, bandpassRoot='test_bandpass_') testBandPasses = {} keys = ['u', 'g', 'r', 'i', 'z'] bplist = [] for kk in keys: testBandPasses[kk] = Bandpass() testBandPasses[kk].readThroughput(os.path.join(bandpassDir, "test_bandpass_%s.dat" % kk)) bplist.append(testBandPasses[kk]) sedObj = Sed() phiArray, waveLenStep = sedObj.setupPhiArray(bplist) sedFileName = os.path.join(lsst.utils.getPackageDir('sims_photUtils'), 'tests/cartoonSedTestData/starSed/') sedFileName = os.path.join(sedFileName, 'kurucz', 'km20_5750.fits_g40_5790.gz') ss = Sed() ss.readSED_flambda(sedFileName) controlBandpass = Bandpass() controlBandpass.imsimBandpass() ff = ss.calcFluxNorm(22.0, controlBandpass) ss.multiplyFluxNorm(ff) testMags = cartoon_dict.magListForSed(ss) ss.resampleSED(wavelen_match = bplist[0].wavelen) ss.flambdaTofnu() mags = -2.5*np.log10(np.sum(phiArray*ss.fnu, axis=1)*waveLenStep) - ss.zp self.assertEqual(len(mags), len(testMags)) self.assertGreater(len(mags), 0) for j in range(len(mags)): self.assertAlmostEqual(mags[j], testMags[j], 10)
def testAlternateBandpassesGalaxies(self): """ the same as testAlternateBandpassesStars, but for galaxies """ obs_metadata_pointed = ObservationMetaData(mjd=50000.0, boundType='circle', pointingRA=0.0, pointingDec=0.0, boundLength=10.0) dtype = np.dtype([('galid', np.int), ('ra', np.float), ('dec', np.float), ('uTotal', np.float), ('gTotal', np.float), ('rTotal', np.float), ('iTotal', np.float), ('zTotal', np.float), ('uBulge', np.float), ('gBulge', np.float), ('rBulge', np.float), ('iBulge', np.float), ('zBulge', np.float), ('uDisk', np.float), ('gDisk', np.float), ('rDisk', np.float), ('iDisk', np.float), ('zDisk', np.float), ('uAgn', np.float), ('gAgn', np.float), ('rAgn', np.float), ('iAgn', np.float), ('zAgn', np.float), ('bulgeName', str, 200), ('bulgeNorm', np.float), ('bulgeAv', np.float), ('diskName', str, 200), ('diskNorm', np.float), ('diskAv', np.float), ('agnName', str, 200), ('agnNorm', np.float), ('redshift', np.float)]) test_cat = cartoonGalaxies(self.galaxy, obs_metadata=obs_metadata_pointed) with lsst.utils.tests.getTempFilePath('.txt') as catName: test_cat.write_catalog(catName) catData = np.genfromtxt(catName, dtype=dtype, delimiter=', ') self.assertGreater(len(catData), 0) cartoonDir = getPackageDir('sims_photUtils') cartoonDir = os.path.join(cartoonDir, 'tests', 'cartoonSedTestData') sedDir = getPackageDir('sims_sed_library') testBandpasses = {} keys = ['u', 'g', 'r', 'i', 'z'] for kk in keys: testBandpasses[kk] = Bandpass() testBandpasses[kk].readThroughput(os.path.join(cartoonDir, "test_bandpass_%s.dat" % kk)) imsimBand = Bandpass() imsimBand.imsimBandpass() specMap = defaultSpecMap ct = 0 for line in catData: bulgeMagList = [] diskMagList = [] agnMagList = [] if line['bulgeName'] == 'None': for bp in keys: np.testing.assert_equal(line['%sBulge' % bp], np.NaN) bulgeMagList.append(np.NaN) else: ct += 1 dummySed = Sed() dummySed.readSED_flambda(os.path.join(sedDir, specMap[line['bulgeName']])) fnorm = dummySed.calcFluxNorm(line['bulgeNorm'], imsimBand) dummySed.multiplyFluxNorm(fnorm) a_int, b_int = dummySed.setupCCM_ab() dummySed.addDust(a_int, b_int, A_v=line['bulgeAv']) dummySed.redshiftSED(line['redshift'], dimming=True) dummySed.resampleSED(wavelen_match=testBandpasses['u'].wavelen) for bpName in keys: mag = dummySed.calcMag(testBandpasses[bpName]) self.assertAlmostEqual(mag, line['%sBulge' % bpName], 10) bulgeMagList.append(mag) if line['diskName'] == 'None': for bp in keys: np.assert_equal(line['%sDisk' % bp], np.NaN) diskMagList.append(np.NaN) else: ct += 1 dummySed = Sed() dummySed.readSED_flambda(os.path.join(sedDir, specMap[line['diskName']])) fnorm = dummySed.calcFluxNorm(line['diskNorm'], imsimBand) dummySed.multiplyFluxNorm(fnorm) a_int, b_int = dummySed.setupCCM_ab() dummySed.addDust(a_int, b_int, A_v=line['diskAv']) dummySed.redshiftSED(line['redshift'], dimming=True) dummySed.resampleSED(wavelen_match=testBandpasses['u'].wavelen) for bpName in keys: mag = dummySed.calcMag(testBandpasses[bpName]) self.assertAlmostEqual(mag, line['%sDisk' % bpName], 10) diskMagList.append(mag) if line['agnName'] == 'None': for bp in keys: np.testing.assert_true(line['%sAgn' % bp], np.NaN) agnMagList.append(np.NaN) else: ct += 1 dummySed = Sed() dummySed.readSED_flambda(os.path.join(sedDir, specMap[line['agnName']])) fnorm = dummySed.calcFluxNorm(line['agnNorm'], imsimBand) dummySed.multiplyFluxNorm(fnorm) dummySed.redshiftSED(line['redshift'], dimming=True) dummySed.resampleSED(wavelen_match=testBandpasses['u'].wavelen) for bpName in keys: mag = dummySed.calcMag(testBandpasses[bpName]) self.assertAlmostEqual(mag, line['%sAgn' % bpName], 10) agnMagList.append(mag) totalMags = PhotometryGalaxies().sum_magnitudes(bulge=np.array(bulgeMagList), disk=np.array(diskMagList), agn=np.array(agnMagList)) for testMag, bpName in zip(totalMags, keys): if np.isnan(line['%sTotal' % bpName]): np.testing.assert_equal(testMag, np.NaN) else: self.assertAlmostEqual(testMag, line['%sTotal' % bpName], 10) self.assertGreater(ct, 0)
def SNObjectSED(self, time, wavelen=None, bandpass=None, applyExtinction=True): ''' return a `lsst.sims.photUtils.sed` object from the SN model at the requested time and wavelengths with or without extinction from MW according to the SED extinction methods. The wavelengths may be obtained from a `lsst.sims.Bandpass` object or a `lsst.sims.BandpassDict` object instead. (Currently, these have the same wavelengths). See notes for details on handling of exceptions. If the sed is requested at times outside the validity range of the model, the flux density is returned as 0. If the time is within the range of validity of the model, but the wavelength range requested is outside the range, then the returned fluxes are np.nan outside the range, and the model fluxes inside Parameters ---------- time: float time of observation wavelen: `np.ndarray` of floats, optional, defaults to None array containing wavelengths in nm bandpass: `lsst.sims.photUtils.Bandpass` object or `lsst.sims.photUtils.BandpassDict`, optional, defaults to `None`. Using the dict assumes that the wavelength sampling and range is the same for all elements of the dict. if provided, overrides wavelen input and the SED is obtained at the wavelength values native to bandpass object. Returns ------- `sims_photutils.sed` object containing the wavelengths and SED values from the SN at time time in units of ergs/cm^2/sec/nm .. note: If both wavelen and bandpassobject are `None` then exception, will be raised. Examples -------- >>> sed = SN.SNObjectSED(time=0., wavelen=wavenm) ''' if wavelen is None and bandpass is None: raise ValueError('A non None input to either wavelen or\ bandpassobject must be provided') # if bandpassobject present, it overrides wavelen if bandpass is not None: if isinstance(bandpass, BandpassDict): firstfilter = bandpass.keys()[0] bp = bandpass[firstfilter] else: bp = bandpass # remember this is in nm wavelen = bp.wavelen flambda = np.zeros(len(wavelen)) # self.mintime() and self.maxtime() are properties describing # the ranges of SNCosmo.Model in time. Behavior beyond this is # determined by self.modelOutSideTemporalRange if (time >= self.mintime()) and (time <= self.maxtime()): # If SNCosmo is requested a SED value beyond the wavelength range # of model it will crash. Try to prevent that by returning np.nan for # such wavelengths. This will still not help band flux calculations # but helps us get past this stage. flambda = flambda * np.nan # Convert to Ang wave = wavelen * 10.0 mask1 = wave >= self.minwave() mask2 = wave <= self.maxwave() mask = mask1 & mask2 wave = wave[mask] # flux density dE/dlambda returned from SNCosmo in # ergs/cm^2/sec/Ang, convert to ergs/cm^2/sec/nm flambda[mask] = self.flux(time=time, wave=wave) flambda[mask] = flambda[mask] * 10.0 else: # use prescription for modelOutSideTemporalRange if self.modelOutSideTemporalRange != 'zero': raise NotImplementedError('Model not implemented, change to zero\n') # Else Do nothing as flambda is already 0. # This takes precedence over being outside wavelength range if self.rectifySED: # Note that this converts nans into 0. flambda = np.where(flambda > 0., flambda, 0.) SEDfromSNcosmo = Sed(wavelen=wavelen, flambda=flambda) if not applyExtinction: return SEDfromSNcosmo # Apply LSST extinction global _sn_ax_cache global _sn_bx_cache global _sn_ax_bx_wavelen if _sn_ax_bx_wavelen is None \ or len(wavelen)!=len(_sn_ax_bx_wavelen) \ or (wavelen!=_sn_ax_bx_wavelen).any(): ax, bx = SEDfromSNcosmo.setupCCM_ab() _sn_ax_cache = ax _sn_bx_cache = bx _sn_ax_bx_wavelen = np.copy(wavelen) else: ax = _sn_ax_cache bx = _sn_bx_cache if self.ebvofMW is None: raise ValueError('ebvofMW attribute cannot be None Type and must' ' be set by hand using set_MWebv before this' 'stage, or by using setcoords followed by' 'mwEBVfromMaps\n') SEDfromSNcosmo.addDust(a_x=ax, b_x=bx, ebv=self.ebvofMW) return SEDfromSNcosmo
def calcMagNorm(self, objectMags, sedObj, bandpassDict, mag_error=None, redshift=None, filtRange=None): """ This will find the magNorm value that gives the closest match to the magnitudes of the object using the matched SED. Uses scipy.optimize.leastsq to find the values of fluxNorm that minimizes the function: ((flux_obs - (fluxNorm*flux_model))/flux_error)**2. @param [in] objectMags are the magnitude values for the object with extinction matching that of the SED object. In the normal case using the selectSED routines above it will be dereddened mags. @param [in] sedObj is an Sed class instance that is set with the wavelength and flux of the matched SED @param [in] bandpassDict is a BandpassDict class instance with the Bandpasses set to those for the magnitudes given for the catalog object @param [in] mag_error are provided error values for magnitudes in objectMags. If none provided then this defaults to 1.0. This should be an array of the same length as objectMags. @param [in] redshift is the redshift of the object if the magnitude is observed @param [in] filtRange is a selected range of filters specified by their indices in the bandpassList to match up against. Used when missing data in some magnitude bands. @param [out] bestMagNorm is the magnitude normalization for the given magnitudes and SED """ import scipy.optimize as opt sedTest = Sed() sedTest.setSED(sedObj.wavelen, flambda=sedObj.flambda) if redshift is not None: sedTest.redshiftSED(redshift) imSimBand = Bandpass() imSimBand.imsimBandpass() zp = -2.5 * np.log10(3631) #Note using default AB zeropoint flux_obs = np.power(10, (objectMags + zp) / (-2.5)) sedTest.resampleSED(wavelen_match=bandpassDict.values()[0].wavelen) sedTest.flambdaTofnu() flux_model = sedTest.manyFluxCalc(bandpassDict.phiArray, bandpassDict.wavelenStep) if filtRange is not None: flux_obs = flux_obs[filtRange] flux_model = flux_model[filtRange] if mag_error is None: flux_error = np.ones(len(flux_obs)) else: flux_error = np.abs(flux_obs * (np.log(10) / (-2.5)) * mag_error) bestFluxNorm = opt.leastsq( lambda x: ((flux_obs - (x * flux_model)) / flux_error), 1.0)[0][0] sedTest.multiplyFluxNorm(bestFluxNorm) bestMagNorm = sedTest.calcMag(imSimBand) return bestMagNorm
def matchToObserved(self, sedList, catMags, catRedshifts, catRA=None, catDec=None, mag_error=None, bandpassDict=None, dzAcc=2, reddening=True, extCoeffs=(4.239, 3.303, 2.285, 1.698, 1.263)): """ This will find the closest match to the magnitudes of a galaxy catalog if those magnitudes are in the observed frame and can correct for reddening from within the milky way as well if needed. In order to make things faster it first calculates colors for all model SEDs at redshifts between the minimum and maximum redshifts of the catalog objects provided with a grid spacing in redshift defined by the parameter dzAcc. Objects without magnitudes in at least two adjacent bandpasses will return as none and print out a message. @param [in] sedList is the set of spectral objects from the models SEDs provided by loadBC03 or other custom loader routine. @param [in] catMags is an array of the magnitudes of catalog objects to be matched with a model SED. It should be organized so that there is one object's magnitudes along each row. @param [in] catRedshifts is an array of the redshifts of each catalog object. @param [in] catRA is an array of the RA positions for each catalog object. @param [in] catDec is an array of the Dec position for each catalog object. @param [in] mag_error are provided error values for magnitudes in objectMags. If none provided then this defaults to 1.0. This should be an array of the same size as catMags. @param [in] bandpassDict is a BandpassDict with which to calculate magnitudes. If left equal to None it will by default load the SDSS [u,g,r,i,z] bandpasses and therefore agree with default extCoeffs. @param [in] dzAcc is the number of decimal places you want to use when building the redshift grid. For example, dzAcc = 2 will create a grid between the minimum and maximum redshifts with colors calculated at every 0.01 change in redshift. @param [in] reddening is a boolean that determines whether to correct catalog magnitudes for dust in the milky way. By default, it is True. If true, this uses calculateEBV from EBV.py to find an EBV value for the object's ra and dec coordinates and then uses the coefficients provided by extCoeffs which should come from Schlafly and Finkbeiner (2011) for the correct filters and in the same order as provided in bandpassDict. If false, this means it will not run the dereddening procedure. @param [in] extCoeffs are the Schlafly and Finkbeiner (2011) (ApJ, 737, 103) coefficients for the given filters from bandpassDict and need to be in the same order as bandpassDict. The default given are the SDSS [u,g,r,i,z] values. @param [out] sedMatches is a list with the name of a model SED that matches most closely to each object in the catalog. @param [out] magNormMatches are the magnitude normalizations for the given magnitudes and matched SED. @param [out] matchErrors contains the Mean Squared Error between the colors of each object and the colors of the matched SED. """ #Set up photometry to calculate model Mags if bandpassDict is None: galPhot = BandpassDict.loadTotalBandpassesFromFiles( ['u', 'g', 'r', 'i', 'z'], bandpassDir=os.path.join( lsst.utils.getPackageDir('throughputs'), 'sdss'), bandpassRoot='sdss_') else: galPhot = bandpassDict #Calculate ebv from ra, dec coordinates if needed if reddening == True: #Check that catRA and catDec are included if catRA is None or catDec is None: raise RuntimeError( "Reddening is True, but catRA and catDec are not included." ) calcEBV = ebv() raDec = np.array((catRA, catDec)) #If only matching one object need to reshape for calculateEbv if len(raDec.shape) == 1: raDec = raDec.reshape((2, 1)) ebvVals = calcEBV.calculateEbv(equatorialCoordinates=raDec) objMags = self.deReddenMags(ebvVals, catMags, extCoeffs) else: objMags = catMags minRedshift = np.round(np.min(catRedshifts), dzAcc) maxRedshift = np.round(np.max(catRedshifts), dzAcc) dz = np.power(10., (-1 * dzAcc)) redshiftRange = np.round( np.arange(minRedshift - dz, maxRedshift + (2 * dz), dz), dzAcc) numRedshifted = 0 sedMatches = [None] * len(catRedshifts) magNormMatches = [None] * len(catRedshifts) matchErrors = [None] * len(catRedshifts) redshiftIndex = np.argsort(catRedshifts) numOn = 0 notMatched = 0 lastRedshift = -100 print 'Starting Matching. Arranged by redshift value.' for redshift in redshiftRange: if numRedshifted % 10 == 0: print '%i out of %i redshifts gone through' % ( numRedshifted, len(redshiftRange)) numRedshifted += 1 colorSet = [] for galSpec in sedList: sedColors = [] fileSED = Sed() fileSED.setSED(wavelen=galSpec.wavelen, flambda=galSpec.flambda) fileSED.redshiftSED(redshift) sedColors = self.calcBasicColors([fileSED], galPhot, makeCopy=True) colorSet.append(sedColors) colorSet = np.transpose(colorSet) for currentIndex in redshiftIndex[numOn:]: matchMags = objMags[currentIndex] if lastRedshift < np.round(catRedshifts[currentIndex], dzAcc) <= redshift: colorRange = np.arange(0, len(galPhot) - 1) matchColors = [] for colorNum in colorRange: matchColors.append(matchMags[colorNum] - matchMags[colorNum + 1]) #This is done to handle objects with incomplete magnitude data filtNums = np.arange(0, len(galPhot)) if np.isnan(np.amin(matchColors)) == True: colorRange = np.where( np.isnan(matchColors) == False)[0] filtNums = np.unique([ colorRange, colorRange + 1 ]) #Pick right filters in calcMagNorm if len(colorRange) == 0: print 'Could not match object #%i. No magnitudes for two adjacent bandpasses.' \ % (currentIndex) notMatched += 1 #Don't need to assign 'None' here in result array, b/c 'None' is default value else: distanceArray = [np.zeros(len(sedList))] for colorNum in colorRange: distanceArray += np.power( (colorSet[colorNum] - matchColors[colorNum]), 2) matchedSEDNum = np.nanargmin(distanceArray) sedMatches[currentIndex] = sedList[matchedSEDNum].name magNormVal = self.calcMagNorm( np.array(matchMags), sedList[matchedSEDNum], galPhot, mag_error=mag_error, redshift=catRedshifts[currentIndex], filtRange=filtNums) magNormMatches[currentIndex] = magNormVal matchErrors[currentIndex] = ( distanceArray[0, matchedSEDNum] / len(colorRange)) numOn += 1 else: break lastRedshift = redshift print 'Done Matching. Matched %i of %i catalog objects to SEDs' % ( len(catMags) - notMatched, len(catMags)) if notMatched > 0: print '%i objects did not get matched.' % (notMatched) return sedMatches, magNormMatches, matchErrors
def testMatchToObserved(self): """Test that Galaxy SEDs with extinction or redshift are matched correctly""" rng = np.random.RandomState(42) galPhot = BandpassDict.loadTotalBandpassesFromFiles() imSimBand = Bandpass() imSimBand.imsimBandpass() testMatching = selectGalaxySED(galDir = self.testSpecDir) testSEDList = testMatching.loadBC03() testSEDNames = [] testRA = [] testDec = [] testRedshifts = [] testMagNormList = [] magNormStep = 1 extCoeffs = [1.8140, 1.4166, 0.9947, 0.7370, 0.5790, 0.4761] testMags = [] testMagsRedshift = [] testMagsExt = [] for testSED in testSEDList: # As a check make sure that it matches when no extinction and no redshift are present getSEDMags = Sed() testSEDNames.append(testSED.name) getSEDMags.setSED(wavelen = testSED.wavelen, flambda = testSED.flambda) testMags.append(galPhot.magListForSed(getSEDMags)) # Check Extinction corrections sedRA = rng.uniform(10, 170) sedDec = rng.uniform(10, 80) testRA.append(sedRA) testDec.append(sedDec) raDec = np.array((sedRA, sedDec)).reshape((2, 1)) ebvVal = ebv().calculateEbv(equatorialCoordinates = raDec) extVal = ebvVal*extCoeffs testMagsExt.append(galPhot.magListForSed(getSEDMags) + extVal) # Setup magnitudes for testing matching to redshifted values getRedshiftMags = Sed() testZ = np.round(rng.uniform(1.1, 1.3), 3) testRedshifts.append(testZ) testMagNorm = np.round(rng.uniform(20.0, 22.0), magNormStep) testMagNormList.append(testMagNorm) getRedshiftMags.setSED(wavelen = testSED.wavelen, flambda = testSED.flambda) getRedshiftMags.redshiftSED(testZ) fluxNorm = getRedshiftMags.calcFluxNorm(testMagNorm, imSimBand) getRedshiftMags.multiplyFluxNorm(fluxNorm) testMagsRedshift.append(galPhot.magListForSed(getRedshiftMags)) # Will also test in passing of non-default bandpass testNoExtNoRedshift = testMatching.matchToObserved(testSEDList, testMags, np.zeros(8), reddening = False, bandpassDict = galPhot) testMatchingEbvVals = testMatching.matchToObserved(testSEDList, testMagsExt, np.zeros(8), catRA = testRA, catDec = testDec, reddening = True, extCoeffs = extCoeffs, bandpassDict = galPhot) # Substitute in nan values to simulate incomplete data and make sure magnorm works too. testMagsRedshift[0][1] = np.nan testMagsRedshift[0][3] = np.nan testMagsRedshift[0][4] = np.nan testMagsRedshift[1][1] = np.nan testMatchingRedshift = testMatching.matchToObserved(testSEDList, testMagsRedshift, testRedshifts, dzAcc = 3, reddening = False, bandpassDict = galPhot) self.assertEqual(testSEDNames, testNoExtNoRedshift[0]) self.assertEqual(testSEDNames, testMatchingEbvVals[0]) self.assertEqual(None, testMatchingRedshift[0][0]) self.assertEqual(testSEDNames[1:], testMatchingRedshift[0][1:]) self.assertEqual(None, testMatchingRedshift[1][0]) np.testing.assert_almost_equal(testMagNormList[1:], testMatchingRedshift[1][1:], decimal = magNormStep) # Test Match Errors errMag = testMagsRedshift[2] errRedshift = testRedshifts[2] errMags = np.array((errMag, errMag, errMag, errMag)) errRedshifts = np.array((errRedshift, errRedshift, errRedshift, errRedshift)) errMags[1, 1] += 1. # Total MSE will be 2/(5 colors) = 0.4 errMags[2, 0:2] = np.nan errMags[2, 3] += 1. # Total MSE will be 2/(3 colors) = 0.667 errMags[3, :] = None errSED = testSEDList[2] testMatchingResultsErrors = testMatching.matchToObserved([errSED], errMags, errRedshifts, reddening = False, bandpassDict = galPhot, dzAcc = 3) np.testing.assert_almost_equal(np.array((0.0, 0.4, 2./3.)), testMatchingResultsErrors[2][0:3], decimal = 2) # Give a little more leeway due to redshifting effects self.assertEqual(None, testMatchingResultsErrors[2][3])
def testSignalToNoise(self): """ Test that calcSNR_m5 and calcSNR_sed give similar results """ defaults = LSSTdefaults() photParams = PhotometricParameters() totalDict, hardwareDict = BandpassDict.loadBandpassesFromFiles() skySED = Sed() skySED.readSED_flambda( os.path.join(lsst.utils.getPackageDir('throughputs'), 'baseline', 'darksky.dat')) m5 = [] for filt in totalDict: m5.append( calcM5(skySED, totalDict[filt], hardwareDict[filt], photParams, seeing=defaults.seeing(filt))) sedDir = lsst.utils.getPackageDir('sims_sed_library') sedDir = os.path.join(sedDir, 'starSED', 'kurucz') fileNameList = os.listdir(sedDir) numpy.random.seed(42) offset = numpy.random.random_sample(len(fileNameList)) * 2.0 for ix, name in enumerate(fileNameList): if ix > 100: break spectrum = Sed() spectrum.readSED_flambda(os.path.join(sedDir, name)) ff = spectrum.calcFluxNorm(m5[2] - offset[ix], totalDict.values()[2]) spectrum.multiplyFluxNorm(ff) magList = [] controlList = [] magList = [] for filt in totalDict: controlList.append( calcSNR_sed(spectrum, totalDict[filt], skySED, hardwareDict[filt], photParams, defaults.seeing(filt))) magList.append(spectrum.calcMag(totalDict[filt])) testList, gammaList = calcSNR_m5(numpy.array(magList), numpy.array(totalDict.values()), numpy.array(m5), photParams) for tt, cc in zip(controlList, testList): msg = '%e != %e ' % (tt, cc) self.assertTrue(numpy.abs(tt / cc - 1.0) < 0.001, msg=msg)
def testFindSED(self): """Pull SEDs from each type and make sure that each SED gets matched to itself. Includes testing with extinction and passing in only colors.""" rng = np.random.RandomState(42) bandpassDir = os.path.join(lsst.utils.getPackageDir('throughputs'), 'sdss') starPhot = BandpassDict.loadTotalBandpassesFromFiles(('u', 'g', 'r', 'i', 'z'), bandpassDir = bandpassDir, bandpassRoot = 'sdss_') imSimBand = Bandpass() imSimBand.imsimBandpass() testMatching = selectStarSED(kuruczDir=self.testKDir, mltDir=self.testMLTDir, wdDir=self.testWDDir) testSEDList = [] testSEDList.append(testMatching.loadKuruczSEDs()) testSEDList.append(testMatching.loadmltSEDs()) testSEDListH, testSEDListHE = testMatching.loadwdSEDs() testSEDList.append(testSEDListH) testSEDList.append(testSEDListHE) testSEDNames = [] testMags = [] testMagNormList = [] magNormStep = 1 for typeList in testSEDList: if len(typeList) != 0: typeSEDNames = [] typeMags = [] typeMagNorms = [] for testSED in typeList: getSEDMags = Sed() typeSEDNames.append(testSED.name) getSEDMags.setSED(wavelen = testSED.wavelen, flambda = testSED.flambda) testMagNorm = np.round(rng.uniform(20.0, 22.0), magNormStep) typeMagNorms.append(testMagNorm) fluxNorm = getSEDMags.calcFluxNorm(testMagNorm, imSimBand) getSEDMags.multiplyFluxNorm(fluxNorm) typeMags.append(starPhot.magListForSed(getSEDMags)) testSEDNames.append(typeSEDNames) testMags.append(typeMags) testMagNormList.append(typeMagNorms) # Since default bandpassDict should be SDSS ugrizy shouldn't need to specify it # Substitute in nan values to simulate incomplete data. for typeList, names, mags, magNorms in zip(testSEDList, testSEDNames, testMags, testMagNormList): if len(typeList) > 2: nanMags = np.array(mags) nanMags[0][0] = np.nan nanMags[0][2] = np.nan nanMags[0][3] = np.nan nanMags[1][1] = np.nan testMatchingResults = testMatching.findSED(typeList, nanMags, reddening = False) self.assertEqual(None, testMatchingResults[0][0]) self.assertEqual(names[1:], testMatchingResults[0][1:]) self.assertEqual(None, testMatchingResults[1][0]) np.testing.assert_almost_equal(magNorms[1:], testMatchingResults[1][1:], decimal = magNormStep) else: testMatchingResults = testMatching.findSED(typeList, mags, reddening = False) self.assertEqual(names, testMatchingResults[0]) np.testing.assert_almost_equal(magNorms, testMatchingResults[1], decimal = magNormStep) # Test Null Values option nullMags = np.array(testMags[0]) nullMags[0][0] = -99. nullMags[0][4] = -99. nullMags[1][0] = -99. nullMags[1][1] = -99. testMatchingResultsNull = testMatching.findSED(testSEDList[0], nullMags, nullValues = -99., reddening = False) self.assertEqual(testSEDNames[0], testMatchingResultsNull[0]) np.testing.assert_almost_equal(testMagNormList[0], testMatchingResultsNull[1], decimal = magNormStep) # Test Error Output errMags = np.array((testMags[0][0], testMags[0][0], testMags[0][0], testMags[0][0])) errMags[1, 1] += 1. # Total MSE will be 2/(4 colors) = 0.5 errMags[2, 0:2] = np.nan errMags[2, 3] += 1. # Total MSE will be 2/(2 colors) = 1.0 errMags[3, :] = None errSED = testSEDList[0][0] testMatchingResultsErrors = testMatching.findSED([errSED], errMags, reddening = False) np.testing.assert_almost_equal(np.array((0.0, 0.5, 1.0)), testMatchingResultsErrors[2][0:3], decimal = 3) self.assertEqual(None, testMatchingResultsErrors[2][3]) # Now test what happens if we pass in a bandpassDict testMatchingResultsNoDefault = testMatching.findSED(testSEDList[0], testMags[0], bandpassDict = starPhot, reddening = False) self.assertEqual(testSEDNames[0], testMatchingResultsNoDefault[0]) np.testing.assert_almost_equal(testMagNormList[0], testMatchingResultsNoDefault[1], decimal = magNormStep) # Test Reddening testRA = rng.uniform(10, 170, len(testSEDList[0])) testDec = rng.uniform(10, 80, len(testSEDList[0])) extFactor = .5 raDec = np.array((testRA, testDec)) ebvVals = ebv().calculateEbv(equatorialCoordinates = raDec) extVals = ebvVals*extFactor testRedMags = [] for extVal, testMagSet in zip(extVals, testMags[0]): testRedMags.append(testMagSet + extVal) testMatchingResultsRed = testMatching.findSED(testSEDList[0], testRedMags, catRA = testRA, catDec = testDec, reddening = True, extCoeffs = np.ones(5)*extFactor) self.assertEqual(testSEDNames[0], testMatchingResultsRed[0]) np.testing.assert_almost_equal(testMagNormList[0], testMatchingResultsRed[1], decimal = magNormStep) # Finally, test color input testColors = [] for testMagSet in testMags[0]: testColorSet = [] for filtNum in range(0, len(starPhot)-1): testColorSet.append(testMagSet[filtNum] - testMagSet[filtNum+1]) testColors.append(testColorSet) testMatchingColorsInput = testMatching.findSED(testSEDList[0], testMags[0], reddening = False, colors = testColors) self.assertEqual(testSEDNames[0], testMatchingColorsInput[0]) np.testing.assert_almost_equal(testMagNormList[0], testMatchingColorsInput[1], decimal = magNormStep)
def applyIGM(self, redshift, sedobj): """ Apply IGM extinction to already redshifted sed with redshift between zMin and zMax defined by range of lookup tables @param [in] redshift is the redshift of the incoming SED object @param [in] sedobj is the SED object to which IGM extinction will be applied. This object will be modified as a result of this. """ if self.IGMisInitialized == False: self.initializeIGM() #First make sure redshift is in range of lookup tables. if (redshift < self.zMin) or (redshift > self.zMax): warnings.warn( str("IGM Lookup tables only applicable for " + str(self.zMin) + " < z < " + str(self.zMax) + ". No action taken")) return #Now read in closest two lookup tables for given redshift lowerSed = Sed() upperSed = Sed() for lower, upper in zip(self.zRange[:-1], self.zRange[1:]): if lower <= redshift <= upper: lowerSed.setSED(self.meanLookups[str(lower)][:, 0], flambda=self.meanLookups[str(lower)][:, 1]) upperSed.setSED(self.meanLookups[str(upper)][:, 0], flambda=self.meanLookups[str(upper)][:, 1]) break #Redshift lookup tables to redshift of source, i.e. if source redshift is 1.78 shift lookup #table for 1.7 and lookup table for 1.8 to up and down to 1.78, respectively zLowerShift = ((1.0 + redshift) / (1.0 + lower)) - 1.0 zUpperShift = ((1.0 + redshift) / (1.0 + upper)) - 1.0 lowerSed.redshiftSED(zLowerShift) upperSed.redshiftSED(zUpperShift) #Resample lower and upper transmission data onto same wavelength grid. minWavelen = 300. #All lookup tables are usable above 300nm maxWavelen = np.amin([lowerSed.wavelen[-1], upperSed.wavelen[-1] ]) - 0.01 lowerSed.resampleSED(wavelen_min=minWavelen, wavelen_max=maxWavelen, wavelen_step=0.01) upperSed.resampleSED(wavelen_match=lowerSed.wavelen) #Now insert this into a transmission array of 1.0 beyond the limits of current application #So that we can get an sed back that extends to the longest wavelengths of the incoming sed finalWavelen = np.arange(300., sedobj.wavelen[-1] + 0.01, 0.01) finalFlambdaExtended = np.ones(len(finalWavelen)) #Weighted Average of Transmission from each lookup table to get final transmission #table at desired redshift dzGrid = self.zDelta #Step in redshift between transmission lookup table files finalSed = Sed() finalFlambda = (lowerSed.flambda * (1.0 - ((redshift - lower) / dzGrid)) + upperSed.flambda * (1.0 - ((upper - redshift) / dzGrid))) finalFlambdaExtended[0:len(finalFlambda)] = finalFlambda finalSed.setSED(wavelen=finalWavelen, flambda=finalFlambdaExtended) #Resample incoming sed to new grid so that we don't get warnings from multiplySED #about matching wavelength grids sedobj.resampleSED(wavelen_match=finalSed.wavelen) #Now multiply transmission curve by input SED to get final result and make it the new flambda #data in the original sed which also is now on a new grid starting at 300 nm test = sedobj.multiplySED(finalSed) sedobj.flambda = test.flambda
def testAlternateBandpassesGalaxies(self): """ the same as testAlternateBandpassesStars, but for galaxies """ obs_metadata_pointed = ObservationMetaData(mjd=50000.0, boundType='circle', pointingRA=0.0, pointingDec=0.0, boundLength=10.0) dtype = np.dtype([('galid', np.int), ('ra', np.float), ('dec', np.float), ('uTotal', np.float), ('gTotal', np.float), ('rTotal', np.float), ('iTotal', np.float), ('zTotal', np.float), ('uBulge', np.float), ('gBulge', np.float), ('rBulge', np.float), ('iBulge', np.float), ('zBulge', np.float), ('uDisk', np.float), ('gDisk', np.float), ('rDisk', np.float), ('iDisk', np.float), ('zDisk', np.float), ('uAgn', np.float), ('gAgn', np.float), ('rAgn', np.float), ('iAgn', np.float), ('zAgn', np.float), ('bulgeName', str, 200), ('bulgeNorm', np.float), ('bulgeAv', np.float), ('diskName', str, 200), ('diskNorm', np.float), ('diskAv', np.float), ('agnName', str, 200), ('agnNorm', np.float), ('redshift', np.float)]) test_cat = cartoonGalaxies(self.galaxy, obs_metadata=obs_metadata_pointed) with lsst.utils.tests.getTempFilePath('.txt') as catName: test_cat.write_catalog(catName) catData = np.genfromtxt(catName, dtype=dtype, delimiter=', ') self.assertGreater(len(catData), 0) cartoonDir = getPackageDir('sims_photUtils') cartoonDir = os.path.join(cartoonDir, 'tests', 'cartoonSedTestData') sedDir = getPackageDir('sims_sed_library') testBandpasses = {} keys = ['u', 'g', 'r', 'i', 'z'] for kk in keys: testBandpasses[kk] = Bandpass() testBandpasses[kk].readThroughput( os.path.join(cartoonDir, "test_bandpass_%s.dat" % kk)) imsimBand = Bandpass() imsimBand.imsimBandpass() specMap = defaultSpecMap ct = 0 for line in catData: bulgeMagList = [] diskMagList = [] agnMagList = [] if line['bulgeName'] == 'None': for bp in keys: np.testing.assert_equal(line['%sBulge' % bp], np.NaN) bulgeMagList.append(np.NaN) else: ct += 1 dummySed = Sed() dummySed.readSED_flambda( os.path.join(sedDir, specMap[line['bulgeName']])) fnorm = dummySed.calcFluxNorm(line['bulgeNorm'], imsimBand) dummySed.multiplyFluxNorm(fnorm) a_int, b_int = dummySed.setupCCM_ab() dummySed.addDust(a_int, b_int, A_v=line['bulgeAv']) dummySed.redshiftSED(line['redshift'], dimming=True) dummySed.resampleSED(wavelen_match=testBandpasses['u'].wavelen) for bpName in keys: mag = dummySed.calcMag(testBandpasses[bpName]) self.assertAlmostEqual(mag, line['%sBulge' % bpName], 10) bulgeMagList.append(mag) if line['diskName'] == 'None': for bp in keys: np.assert_equal(line['%sDisk' % bp], np.NaN) diskMagList.append(np.NaN) else: ct += 1 dummySed = Sed() dummySed.readSED_flambda( os.path.join(sedDir, specMap[line['diskName']])) fnorm = dummySed.calcFluxNorm(line['diskNorm'], imsimBand) dummySed.multiplyFluxNorm(fnorm) a_int, b_int = dummySed.setupCCM_ab() dummySed.addDust(a_int, b_int, A_v=line['diskAv']) dummySed.redshiftSED(line['redshift'], dimming=True) dummySed.resampleSED(wavelen_match=testBandpasses['u'].wavelen) for bpName in keys: mag = dummySed.calcMag(testBandpasses[bpName]) self.assertAlmostEqual(mag, line['%sDisk' % bpName], 10) diskMagList.append(mag) if line['agnName'] == 'None': for bp in keys: np.testing.assert_true(line['%sAgn' % bp], np.NaN) agnMagList.append(np.NaN) else: ct += 1 dummySed = Sed() dummySed.readSED_flambda( os.path.join(sedDir, specMap[line['agnName']])) fnorm = dummySed.calcFluxNorm(line['agnNorm'], imsimBand) dummySed.multiplyFluxNorm(fnorm) dummySed.redshiftSED(line['redshift'], dimming=True) dummySed.resampleSED(wavelen_match=testBandpasses['u'].wavelen) for bpName in keys: mag = dummySed.calcMag(testBandpasses[bpName]) self.assertAlmostEqual(mag, line['%sAgn' % bpName], 10) agnMagList.append(mag) totalMags = PhotometryGalaxies().sum_magnitudes( bulge=np.array(bulgeMagList), disk=np.array(diskMagList), agn=np.array(agnMagList)) for testMag, bpName in zip(totalMags, keys): if np.isnan(line['%sTotal' % bpName]): np.testing.assert_equal(testMag, np.NaN) else: self.assertAlmostEqual(testMag, line['%sTotal' % bpName], 10) self.assertGreater(ct, 0)
def loadGalfast(self, filenameList, outFileList, sEDPath=None, kuruczPath=None, mltPath=None, wdPath=None, kuruczSubset=None, mltSubset=None, wdSubset=None, chunkSize=10000): """ This is customized for the outputs we currently need for the purposes of consistent output It will read in a galfast output file and output desired values for database input into a file @param [in] filenameList is a list of the galfast output files that will be loaded and processed. Can process fits, gzipped, or txt output from galfast. @param [in] outFileList is a list of the names of the output files that will be created. If gzipped output is desired simply write the filenames with .gz at the end. @param [in] kuruczPath is a place to specify a path to kurucz SED files @param [in] mltPath is the same as kuruczPath except that it specifies a directory for the mlt SEDs @param [in] wdPath is the same as the previous two except that it specifies a path to a white dwarf SED directory. @param [in] kuruczSubset is a list which provides a subset of the kurucz files within the kurucz folder that one wants to use @param [in] mltSubset is a list which provides a subset of the mlt files within the mlt folder that one wants to use @param [in] wdSubset is a list which provides a subset of the wd files within the wd folder that one wants to use @param [in] chunkSize is the size of chunks of lines to be read from the catalog at one time. """ for filename in filenameList: #Make sure input file exists and is readable format before doing anything else if os.path.isfile(filename) == False: raise RuntimeError('*** File does not exist') #Process various possible galfast outputs if filename.endswith(('.txt', '.gz', '.fits')): continue else: raise RuntimeError( str('*** Unsupported File Format in file: ' + str(filename))) #If all files exist and are in proper formats then load seds selectStarSED0 = selectStarSED(kuruczDir=kuruczPath, mltDir=mltPath, wdDir=wdPath) if kuruczSubset is None: kuruczList = selectStarSED0.loadKuruczSEDs() else: kuruczList = selectStarSED0.loadKuruczSEDs(subset=kuruczSubset) #Only need one dictionary since none of the names overlap positionDict = {} for kNum, kuruczSED in enumerate(kuruczList): positionDict[kuruczSED.name] = kNum if mltSubset is None: mltList = selectStarSED0.loadmltSEDs() else: mltList = selectStarSED0.loadmltSEDs(subset=mltSubset) for mltNum, mltSED in enumerate(mltList): positionDict[mltSED.name] = mltNum if wdSubset is None: wdListH, wdListHE = selectStarSED0.loadwdSEDs() else: wdListH, wdListHE = selectStarSED0.loadwdSEDs(subset=wdSubset) for hNum, hSED in enumerate(wdListH): positionDict[hSED.name] = hNum for heNum, heSED in enumerate(wdListHE): positionDict[heSED.name] = heNum #For adding/subtracting extinction when calculating colors #Numbers below come from Schlafly and Finkbeiner (2011) (ApJ, 737, 103) #normalized by SDSS r mag value sdssExtCoeffs = [1.8551, 1.4455, 1.0, 0.7431, 0.5527] lsstExtCoeffs = [1.8140, 1.4166, 0.9947, 0.7370, 0.5790, 0.4761] sdssPhot = BandpassDict.loadTotalBandpassesFromFiles( ['u', 'g', 'r', 'i', 'z'], bandpassDir=os.path.join(lsst.utils.getPackageDir('throughputs'), 'sdss'), bandpassRoot='sdss_') #Load Bandpasses for LSST colors to get colors from matched SEDs lsstFilterList = ('u', 'g', 'r', 'i', 'z', 'y') lsstPhot = BandpassDict.loadTotalBandpassesFromFiles(lsstFilterList) imSimBand = Bandpass() imSimBand.imsimBandpass() #Calculate colors and add them to the SED objects kuruczColors = selectStarSED0.calcBasicColors(kuruczList, sdssPhot) mltColors = selectStarSED0.calcBasicColors(mltList, sdssPhot) hColors = selectStarSED0.calcBasicColors(wdListH, sdssPhot) heColors = selectStarSED0.calcBasicColors(wdListHE, sdssPhot) listDict = { 'kurucz': kuruczList, 'mlt': mltList, 'H': wdListH, 'HE': wdListHE } colorDict = { 'kurucz': kuruczColors, 'mlt': mltColors, 'H': hColors, 'HE': heColors } for filename, outFile in zip(filenameList, outFileList): if filename.endswith('.txt'): galfastIn = open(filename, 'rt') inFits = False gzFile = False num_lines = sum(1 for line in open(filename)) elif filename.endswith('.gz'): galfastIn = gzip.open(filename, 'rt') inFits = False gzFile = True num_lines = sum(1 for line in gzip.open(filename)) elif filename.endswith('fits'): hdulist = fits.open(filename) galfastIn = hdulist[1].data num_lines = len(galfastIn) gzFile = False inFits = True if outFile.endswith('.txt'): fOut = open(outFile, 'wt') elif outFile.endswith('.gz'): fOut = gzip.open(outFile, 'wt') fOut.write('#oID, ra, dec, gall, galb, coordX, coordY, coordZ, sEDName, magNorm, ' +\ 'LSSTugrizy, SDSSugriz, absSDSSr, pmRA, pmDec, vRad, pml, pmb, vRadlb, ' +\ 'vR, vPhi, vZ, FeH, pop, distKpc, ebv, ebvInf\n') header_length = 0 numChunks = 0 if inFits == False: galfastDict = self.parseGalfast(galfastIn.readline()) header_length += 1 header_status = True while header_status == True: newLine = galfastIn.readline() if newLine[0] != '#': header_status = False else: header_length += 1 print('Total objects = %i' % (num_lines - header_length)) numChunks = ((num_lines - header_length) // chunkSize) + 1 for chunk in range(0, numChunks): if chunk == numChunks - 1: lastChunkSize = (num_lines - header_length) % chunkSize readSize = lastChunkSize else: readSize = chunkSize oID = np.arange(readSize * chunk, readSize * (chunk + 1)) if inFits: starData = galfastIn[readSize * chunk:(readSize * chunk + readSize)] sDSS = starData.field('SDSSugriz') gall, galb = np.transpose(starData.field('lb')) ra, dec = np.transpose(starData.field('radec')) coordX, coordY, coordZ = np.transpose( starData.field('XYZ')) DM = starData.field('DM') absSDSSr = starData.field('absSDSSr') pop = starData.field('comp') FeH = starData.field('FeH') vR, vPhi, vZ = np.transpose(starData.field('vcyl')) pml, pmb, vRadlb = np.transpose(starData.field('pmlb')) pmRA, pmDec, vRad = np.transpose(starData.field('pmradec')) am = starData.field('Am') amInf = starData.field('AmInf') sdssPhotoFlags = starData.field('SDSSugrizPhotoFlags') else: if gzFile == False: with open(filename) as t_in: starData = np.loadtxt( itertools.islice( t_in, ((readSize * chunk) + header_length), ((readSize * (chunk + 1)) + header_length))) else: with gzip.open(filename) as t_in: starData = np.loadtxt( itertools.islice( t_in, ((readSize * chunk) + header_length), ((readSize * (chunk + 1)) + header_length))) starData = np.transpose(starData) gall = starData[galfastDict['l']] galb = starData[galfastDict['b']] ra = starData[galfastDict['ra']] dec = starData[galfastDict['dec']] coordX = starData[galfastDict['X']] coordY = starData[galfastDict['Y']] coordZ = starData[galfastDict['Z']] DM = starData[galfastDict['DM']] absSDSSr = starData[galfastDict['absSDSSr']] pop = starData[galfastDict['comp']] FeH = starData[galfastDict['FeH']] vR = starData[galfastDict['Vr']] vPhi = starData[galfastDict['Vphi']] vZ = starData[galfastDict['Vz']] pml = starData[galfastDict['pml']] pmb = starData[galfastDict['pmb']] vRadlb = starData[galfastDict['vRadlb']] pmRA = starData[galfastDict['pmra']] pmDec = starData[galfastDict['pmdec']] vRad = starData[galfastDict['vRad']] am = starData[galfastDict['Am']] amInf = starData[galfastDict['AmInf']] sDSS = np.transpose( starData[galfastDict['SDSSu']:galfastDict['SDSSz'] + 1]) sDSSPhotoFlags = starData[galfastDict['SDSSPhotoFlags']] #End of input, now onto processing and output sDSSunred = selectStarSED0.deReddenMags( am, sDSS, sdssExtCoeffs) if readSize == 1: ra = np.array([ra]) dec = np.array([dec]) """ Info about the following population cuts: From Zeljko: "This color corresponds to the temperature (roughly spectral type M0) where Kurucz models become increasingly bad, and thus we switch to empirical SEDs (the problem is that for M and later stars, the effective surface temperature is low enough for molecules to form, and their opacity is too complex to easily model, especially TiO)." """ mIn = np.where(((pop < 10) | (pop >= 20)) & (sDSSunred[:, 2] - sDSSunred[:, 3] > 0.59)) kIn = np.where(((pop < 10) | (pop >= 20)) & (sDSSunred[:, 2] - sDSSunred[:, 3] <= 0.59)) hIn = np.where((pop >= 10) & (pop < 15)) heIn = np.where((pop >= 15) & (pop < 20)) sEDNameK, magNormK, matchErrorK = selectStarSED0.findSED( listDict['kurucz'], sDSSunred[kIn], ra[kIn], dec[kIn], reddening=False, colors=colorDict['kurucz']) sEDNameM, magNormM, matchErrorM = selectStarSED0.findSED( listDict['mlt'], sDSSunred[mIn], ra[mIn], dec[mIn], reddening=False, colors=colorDict['mlt']) sEDNameH, magNormH, matchErrorH = selectStarSED0.findSED( listDict['H'], sDSSunred[hIn], ra[hIn], dec[hIn], reddening=False, colors=colorDict['H']) sEDNameHE, magNormHE, matchErrorHE = selectStarSED0.findSED( listDict['HE'], sDSSunred[heIn], ra[heIn], dec[heIn], reddening=False, colors=colorDict['HE']) chunkNames = np.empty(readSize, dtype='S32') chunkTypes = np.empty(readSize, dtype='S8') chunkMagNorms = np.zeros(readSize) chunkMatchErrors = np.zeros(readSize) chunkNames[kIn] = sEDNameK chunkTypes[kIn] = 'kurucz' chunkMagNorms[kIn] = magNormK chunkMatchErrors[kIn] = matchErrorK chunkNames[mIn] = sEDNameM chunkTypes[mIn] = 'mlt' chunkMagNorms[mIn] = magNormM chunkMatchErrors[mIn] = matchErrorM chunkNames[hIn] = sEDNameH chunkTypes[hIn] = 'H' chunkMagNorms[hIn] = magNormH chunkMatchErrors[hIn] = matchErrorH chunkNames[heIn] = sEDNameHE chunkTypes[heIn] = 'HE' chunkMagNorms[heIn] = magNormHE chunkMatchErrors[heIn] = matchErrorHE lsstMagsUnred = [] for sedName, sedType, magNorm, matchError in zip( chunkNames.astype(str), chunkTypes.astype(str), chunkMagNorms, chunkMatchErrors): testSED = Sed() testSED.setSED( listDict[sedType][positionDict[sedName]].wavelen, flambda=listDict[sedType][ positionDict[sedName]].flambda) fluxNorm = testSED.calcFluxNorm(magNorm, imSimBand) testSED.multiplyFluxNorm(fluxNorm) lsstMagsUnred.append(lsstPhot.magListForSed(testSED)) #If the extinction value is negative then it will add the reddening back in lsstMags = selectStarSED0.deReddenMags( (-1.0 * am), lsstMagsUnred, lsstExtCoeffs) distKpc = self.convDMtoKpc(DM) ebv = am / 2.285 #From Schlafly and Finkbeiner 2011, (ApJ, 737, 103) for sdssr ebvInf = amInf / 2.285 for line in range(0, readSize): outFmt = '%i,%3.7f,%3.7f,%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%s,' +\ '%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%3.7f,%3.7f,%3.7f,%3.7f,%3.7f,' +\ '%3.7f,%i,%3.7f,%3.7f,%3.7f\n' if readSize == 1: if inFits == True: sDSS = sDSS[0] outDat = (oID, ra[line], dec[line], gall, galb, coordX, coordY, coordZ, chunkNames, chunkMagNorms, chunkMatchErrors, lsstMags[line][0], lsstMags[line][1], lsstMags[line][2], lsstMags[line][3], lsstMags[line][4], lsstMags[line][5], sDSS[0], sDSS[1], sDSS[2], sDSS[3], sDSS[4], absSDSSr, pmRA, pmDec, vRad, pml, pmb, vRadlb, vR, vPhi, vZ, FeH, pop, distKpc, ebv, ebvInf) else: outDat = (oID[line], ra[line], dec[line], gall[line], galb[line], coordX[line], coordY[line], coordZ[line], chunkNames[line], chunkMagNorms[line], chunkMatchErrors[line], lsstMags[line][0], lsstMags[line][1], lsstMags[line][2], lsstMags[line][3], lsstMags[line][4], lsstMags[line][5], sDSS[line][0], sDSS[line][1], sDSS[line][2], sDSS[line][3], sDSS[line][4], absSDSSr[line], pmRA[line], pmDec[line], vRad[line], pml[line], pmb[line], vRadlb[line], vR[line], vPhi[line], vZ[line], FeH[line], pop[line], distKpc[line], ebv[line], ebvInf[line]) fOut.write(outFmt % outDat) print('Chunk Num Done = %i out of %i' % (chunk + 1, numChunks))
def testMatchToObserved(self): """Test that Galaxy SEDs with extinction or redshift are matched correctly""" np.random.seed(42) galPhot = BandpassDict.loadTotalBandpassesFromFiles() imSimBand = Bandpass() imSimBand.imsimBandpass() testMatching = selectGalaxySED(galDir = self.testSpecDir) testSEDList = testMatching.loadBC03() testSEDNames = [] testRA = [] testDec = [] testRedshifts = [] testMagNormList = [] magNormStep = 1 extCoeffs = [1.8140, 1.4166, 0.9947, 0.7370, 0.5790, 0.4761] testMags = [] testMagsRedshift = [] testMagsExt = [] for testSED in testSEDList: #As a check make sure that it matches when no extinction and no redshift are present getSEDMags = Sed() testSEDNames.append(testSED.name) getSEDMags.setSED(wavelen = testSED.wavelen, flambda = testSED.flambda) testMags.append(galPhot.magListForSed(getSEDMags)) #Check Extinction corrections sedRA = np.random.uniform(10,170) sedDec = np.random.uniform(10,80) testRA.append(sedRA) testDec.append(sedDec) raDec = np.array((sedRA, sedDec)).reshape((2,1)) ebvVal = ebv().calculateEbv(equatorialCoordinates = raDec) extVal = ebvVal*extCoeffs testMagsExt.append(galPhot.magListForSed(getSEDMags) + extVal) #Setup magnitudes for testing matching to redshifted values getRedshiftMags = Sed() testZ = np.round(np.random.uniform(1.1,1.3),3) testRedshifts.append(testZ) testMagNorm = np.round(np.random.uniform(20.0,22.0),magNormStep) testMagNormList.append(testMagNorm) getRedshiftMags.setSED(wavelen = testSED.wavelen, flambda = testSED.flambda) getRedshiftMags.redshiftSED(testZ) fluxNorm = getRedshiftMags.calcFluxNorm(testMagNorm, imSimBand) getRedshiftMags.multiplyFluxNorm(fluxNorm) testMagsRedshift.append(galPhot.magListForSed(getRedshiftMags)) #Will also test in passing of non-default bandpass testNoExtNoRedshift = testMatching.matchToObserved(testSEDList, testMags, np.zeros(20), reddening = False, bandpassDict = galPhot) testMatchingEbvVals = testMatching.matchToObserved(testSEDList, testMagsExt, np.zeros(20), catRA = testRA, catDec = testDec, reddening = True, extCoeffs = extCoeffs, bandpassDict = galPhot) #Substitute in nan values to simulate incomplete data and make sure magnorm works too. testMagsRedshift[0][1] = np.nan testMagsRedshift[0][3] = np.nan testMagsRedshift[0][4] = np.nan testMagsRedshift[1][1] = np.nan testMatchingRedshift = testMatching.matchToObserved(testSEDList, testMagsRedshift, testRedshifts, dzAcc = 3, reddening = False, bandpassDict = galPhot) self.assertEqual(testSEDNames, testNoExtNoRedshift[0]) self.assertEqual(testSEDNames, testMatchingEbvVals[0]) self.assertEqual(None, testMatchingRedshift[0][0]) self.assertEqual(testSEDNames[1:], testMatchingRedshift[0][1:]) self.assertEqual(None, testMatchingRedshift[1][0]) np.testing.assert_almost_equal(testMagNormList[1:], testMatchingRedshift[1][1:], decimal = magNormStep) #Test Match Errors errMag = testMagsRedshift[2] errRedshift = testRedshifts[2] errMags = np.array((errMag, errMag, errMag, errMag)) errRedshifts = np.array((errRedshift, errRedshift, errRedshift, errRedshift)) errMags[1,1] += 1. #Total MSE will be 2/(5 colors) = 0.4 errMags[2, 0:2] = np.nan errMags[2, 3] += 1. #Total MSE will be 2/(3 colors) = 0.667 errMags[3, :] = None errSED = testSEDList[2] testMatchingResultsErrors = testMatching.matchToObserved([errSED], errMags, errRedshifts, reddening = False, bandpassDict = galPhot, dzAcc = 3) np.testing.assert_almost_equal(np.array((0.0, 0.4, 2./3.)), testMatchingResultsErrors[2][0:3], decimal = 2) #Give a little more leeway due to redshifting effects self.assertEqual(None, testMatchingResultsErrors[2][3])
def SNObjectSourceSED(self, time, wavelen=None): """ Return the rest Frame SED of SNObject at the phase corresponding to time, at rest frame wavelengths wavelen. If wavelen is None, then the SED is sampled at the rest frame wavelengths native to the SALT model being used. Parameters ---------- time : float, mandatory, observer frame time at which the SED has been requested in units of days. wavelen : `np.ndarray`, optional, defaults to native SALT wavelengths array of wavelengths in the rest frame of the supernova in units of nm. If None, this defaults to the wavelengths at which the SALT model is sampled natively. Returns ------- `numpy.ndarray` of dtype float. .. note: The result should usually match the SALT source spectrum. However, it may be different for the following reasons: 1. If the time of observation is outside the model range, the values have to be inserted using additional models. Here only one model is currently implemented, where outside the model range the value is set to 0. 2. If the wavelengths are beyond the range of the SALT model, the SED flambda values are set to `np.nan` and these are actually set to 0. if `self.rectifySED = True` 3. If the `flambda` values of the SALT model are negative which happens in the less sampled phases of the model, these values are set to 0, if `self.rectifySED` = True. (Note: if `self.rectifySED` = True, then care will be taken to make sure that the flux at 500nm is not exactly zero, since that will cause PhoSim normalization of the SED to be NaN). """ phase = (time - self.get('t0')) / (1. + self.get('z')) source = self.source # Set the default value of wavelength input if wavelen is None: # use native SALT grid in Ang wavelen = source._wave else: #input wavelen in nm, convert to Ang wavelen = wavelen.copy() wavelen *= 10.0 flambda = np.zeros(len(wavelen)) # self.mintime() and self.maxtime() are properties describing # the ranges of SNCosmo.Model in time. Behavior beyond this is # determined by self.modelOutSideTemporalRange insidephaseRange = (phase <= source.maxphase())and(phase >= source.minphase()) if insidephaseRange: # If SNCosmo is requested a SED value beyond the wavelength range # of model it will crash. Try to prevent that by returning np.nan for # such wavelengths. This will still not help band flux calculations # but helps us get past this stage. flambda = flambda * np.nan mask1 = wavelen >= source.minwave() mask2 = wavelen <= source.maxwave() mask = mask1 & mask2 # Where we have to calculate fluxes because it is not `np.nan` wave = wavelen[mask] flambda[mask] = source.flux(phase, wave) else: if self.modelOutSideTemporalRange == 'zero': # flambda was initialized as np.zeros before start of # conditional pass else: raise NotImplementedError('Only modelOutSideTemporalRange=="zero" implemented') # rectify the flux if self.rectifySED: flux = np.where(flambda>0., flambda, 0.) else: flux = flambda # convert per Ang to per nm flux *= 10.0 # convert ang to nm wavelen = wavelen / 10. # If there is zero flux at 500nm, set # the flux in the slot closest to 500nm # equal to 0.01*minimum_non_zero_flux # (this is so SEDs used in PhoSim can have # finite normalization) if self.rectifySED: closest_to_500nm = np.argmin(np.abs(wavelen-500.0)) if flux[closest_to_500nm] == 0.0: non_zero_flux = np.where(flux>0.0) if len(non_zero_flux[0])>0: min_non_zero = np.min(flux[non_zero_flux]) flux[closest_to_500nm] = 0.01*min_non_zero sed = Sed(wavelen=wavelen, flambda=flux) # This has the cosmology built in. return sed
def testFindSED(self): """Pull SEDs from each type and make sure that each SED gets matched to itself. Includes testing with extinction and passing in only colors.""" np.random.seed(42) starPhot = BandpassDict.loadTotalBandpassesFromFiles(('u','g','r','i','z'), bandpassDir = os.path.join(lsst.utils.getPackageDir('throughputs'),'sdss'), bandpassRoot = 'sdss_') imSimBand = Bandpass() imSimBand.imsimBandpass() testMatching = selectStarSED(sEDDir = self.testSpecDir, kuruczDir = self.testKDir, mltDir = self.testMLTDir, wdDir = self.testWDDir) testSEDList = [] testSEDList.append(testMatching.loadKuruczSEDs()) testSEDList.append(testMatching.loadmltSEDs()) testSEDListH, testSEDListHE = testMatching.loadwdSEDs() testSEDList.append(testSEDListH) testSEDList.append(testSEDListHE) testSEDNames = [] testMags = [] testMagNormList = [] magNormStep = 1 for typeList in testSEDList: if len(typeList) != 0: typeSEDNames = [] typeMags = [] typeMagNorms = [] for testSED in typeList: getSEDMags = Sed() typeSEDNames.append(testSED.name) getSEDMags.setSED(wavelen = testSED.wavelen, flambda = testSED.flambda) testMagNorm = np.round(np.random.uniform(20.0,22.0),magNormStep) typeMagNorms.append(testMagNorm) fluxNorm = getSEDMags.calcFluxNorm(testMagNorm, imSimBand) getSEDMags.multiplyFluxNorm(fluxNorm) typeMags.append(starPhot.magListForSed(getSEDMags)) testSEDNames.append(typeSEDNames) testMags.append(typeMags) testMagNormList.append(typeMagNorms) fakeRA = np.ones(len(testSEDList[0])) fakeDec = np.ones(len(testSEDList[0])) #Since default bandpassDict should be SDSS ugrizy shouldn't need to specify it #Substitute in nan values to simulate incomplete data. for typeList, names, mags, magNorms in zip(testSEDList, testSEDNames, testMags, testMagNormList): if len(typeList) > 2: nanMags = np.array(mags) nanMags[0][0] = np.nan nanMags[0][2] = np.nan nanMags[0][3] = np.nan nanMags[1][1] = np.nan testMatchingResults = testMatching.findSED(typeList, nanMags, reddening = False) self.assertEqual(None, testMatchingResults[0][0]) self.assertEqual(names[1:], testMatchingResults[0][1:]) self.assertEqual(None, testMatchingResults[1][0]) np.testing.assert_almost_equal(magNorms[1:], testMatchingResults[1][1:], decimal = magNormStep) else: testMatchingResults = testMatching.findSED(typeList, mags, reddening = False) self.assertEqual(names, testMatchingResults[0]) np.testing.assert_almost_equal(magNorms, testMatchingResults[1], decimal = magNormStep) #Test Null Values option nullMags = np.array(testMags[0]) nullMags[0][0] = -99. nullMags[0][4] = -99. nullMags[1][0] = -99. nullMags[1][1] = -99. testMatchingResultsNull = testMatching.findSED(testSEDList[0], nullMags, nullValues = -99., reddening = False) self.assertEqual(testSEDNames[0], testMatchingResultsNull[0]) np.testing.assert_almost_equal(testMagNormList[0], testMatchingResultsNull[1], decimal = magNormStep) #Test Error Output errMags = np.array((testMags[0][0], testMags[0][0], testMags[0][0], testMags[0][0])) errMags[1,1] += 1. #Total MSE will be 2/(4 colors) = 0.5 errMags[2, 0:2] = np.nan errMags[2, 3] += 1. #Total MSE will be 2/(2 colors) = 1.0 errMags[3, :] = None errSED = testSEDList[0][0] testMatchingResultsErrors = testMatching.findSED([errSED], errMags, reddening = False) np.testing.assert_almost_equal(np.array((0.0, 0.5, 1.0)), testMatchingResultsErrors[2][0:3], decimal = 3) self.assertEqual(None, testMatchingResultsErrors[2][3]) #Now test what happens if we pass in a bandpassDict testMatchingResultsNoDefault = testMatching.findSED(testSEDList[0], testMags[0], bandpassDict = starPhot, reddening = False) self.assertEqual(testSEDNames[0], testMatchingResultsNoDefault[0]) np.testing.assert_almost_equal(testMagNormList[0], testMatchingResultsNoDefault[1], decimal = magNormStep) #Test Reddening testRA = np.random.uniform(10,170,len(testSEDList[0])) testDec = np.random.uniform(10,80,len(testSEDList[0])) extFactor = .5 raDec = np.array((testRA, testDec)) ebvVals = ebv().calculateEbv(equatorialCoordinates = raDec) extVals = ebvVals*extFactor testRedMags = [] for extVal, testMagSet in zip(extVals, testMags[0]): testRedMags.append(testMagSet + extVal) testMatchingResultsRed = testMatching.findSED(testSEDList[0], testRedMags, catRA = testRA, catDec = testDec, reddening = True, extCoeffs = np.ones(5)*extFactor) self.assertEqual(testSEDNames[0], testMatchingResultsRed[0]) np.testing.assert_almost_equal(testMagNormList[0], testMatchingResultsRed[1], decimal = magNormStep) #Finally, test color input testColors = [] for testMagSet in testMags[0]: testColorSet = [] for filtNum in range(0, len(starPhot)-1): testColorSet.append(testMagSet[filtNum] - testMagSet[filtNum+1]) testColors.append(testColorSet) testMatchingColorsInput = testMatching.findSED(testSEDList[0], testMags[0], reddening = False, colors = testColors) self.assertEqual(testSEDNames[0], testMatchingColorsInput[0]) np.testing.assert_almost_equal(testMagNormList[0], testMatchingColorsInput[1], decimal = magNormStep)