Exemple #1
0
def SBDT_resnet18(input_dim=(128, 256),
                  locator_inter_dim=(128, 256),
                  iou_input_dim=(256, 256),
                  iou_inter_dim=(256, 256),
                  backbone_pretrained=True):
    # backbone
    backbone_net = backbones.resnet18(pretrained=backbone_pretrained)

    # Bounding box regressor
    iou_predictor = bbmodels.AtomIoUNet(input_dim=input_dim,
                                        pred_input_dim=iou_input_dim,
                                        pred_inter_dim=iou_inter_dim)

    # locator
    location_predictor = locmodels.OnlineRRNet18(
        input_dim=input_dim, pred_input_dim=locator_inter_dim)

    # SBDTNet
    net = SBDTNet(feature_extractor=backbone_net,
                  feature_layer=['layer2', 'layer3'],
                  bb_regressor=iou_predictor,
                  location_predictor=location_predictor,
                  extractor_grad=False)

    return net
Exemple #2
0
def steepest_descent_learn_filter_resnet18_newiou(filter_size=1, optim_iter=3, optim_init_step=1.0, optim_init_reg=0.01, output_activation=None,
                                 classification_layer='layer3', backbone_pretrained=False, clf_feat_blocks=1,
                                 clf_feat_norm=True, init_filter_norm=False, final_conv=False,
                                 out_feature_dim=256, init_gauss_sigma=1.0, num_dist_bins=5, bin_displacement=1.0, test_loss=None,
                                           mask_init_factor=4.0, iou_input_dim=(256,256), iou_inter_dim=(256,256),
                                                  jitter_sigma_factor=None, train_backbone=True):
    # backbone
    backbone_net = backbones.resnet18(pretrained=backbone_pretrained)

    norm_scale = math.sqrt(1.0 / (out_feature_dim * filter_size * filter_size))

    # classifier
    clf_feature_extractor = clf_features.residual_basic_block(num_blocks=clf_feat_blocks, l2norm=clf_feat_norm,
                                                              final_conv=final_conv, norm_scale=norm_scale,
                                                              out_dim=out_feature_dim)
    initializer = clf_initializer.FilterInitializerLinear(filter_size=filter_size, filter_norm=init_filter_norm, feature_dim=out_feature_dim)
    optimizer = clf_optimizer.SteepestDescentLearn(num_iter=optim_iter, filter_size=filter_size, init_step_length=optim_init_step,
                                                   init_filter_reg=optim_init_reg, feature_dim=out_feature_dim,
                                                   init_gauss_sigma=init_gauss_sigma, num_dist_bins=num_dist_bins,
                                                   bin_displacement=bin_displacement, test_loss=test_loss, mask_init_factor=mask_init_factor)
    classifier = target_clf.LinearFilter(filter_size=filter_size, filter_initializer=initializer,
                                         filter_optimizer=optimizer, feature_extractor=clf_feature_extractor,
                                         output_activation=output_activation, jitter_sigma_factor=jitter_sigma_factor)

    # Bounding box regressor
    bb_regressor = bbmodels.AtomIoUNet(pred_input_dim=iou_input_dim, pred_inter_dim=iou_inter_dim)

    net = OptimTracker(feature_extractor=backbone_net, classifier=classifier, bb_regressor=bb_regressor,
                       classification_layer=classification_layer, bb_regressor_layer=['layer2', 'layer3'], train_feature_extractor=train_backbone)
    return net
Exemple #3
0
def atom_resnet50(iou_input_dim=(512,1024), iou_inter_dim=(256,256), backbone_pretrained=True):
    # backbone
    backbone_net = backbones.resnet50(pretrained=backbone_pretrained)
    if backbone_pretrained:
        mod = torch.load('/mnt/lustre/baishuai/experiment/pytracking_networks/rpn_r50_c4_2x-3d4c1e14.pth')['state_dict']
        model_dict = backbone_net.state_dict()
        pretrained_dict ={}
        for k, v in mod.items():
            name = k.split('.')[1:]
            name = '.'.join(name)
            if name in model_dict and k.split('.')[0] != "rpn_head":
                # print(name)
                pretrained_dict[name] = v

        # pretrained_dict =  {k: v for k, v in other_state_dict.items() if k in model_dict and k.split('.')[0] != "mask_head"}

        model_dict.update(pretrained_dict)

        backbone_net.load_state_dict(model_dict, strict=True)

    # Bounding box regressor
    iou_predictor = bbmodels.AtomIoUNet(input_dim=iou_input_dim, pred_inter_dim=iou_inter_dim)

    net = ATOMnet(feature_extractor=backbone_net, bb_regressor=iou_predictor, bb_regressor_layer=['layer2', 'layer3'],
                  extractor_grad=False)

    return net
Exemple #4
0
def steepest_descent_learn_filter_resnet50_newiou(filter_size=1, optim_iter=3, optim_init_step=1.0, optim_init_reg=0.01, output_activation=None,
                                 classification_layer='layer3', backbone_pretrained=False, clf_feat_blocks=1,
                                 clf_feat_norm=True, init_filter_norm=False, final_conv=False,
                                 out_feature_dim=256, init_gauss_sigma=1.0, num_dist_bins=5, bin_displacement=1.0, test_loss=None,
                                           mask_init_factor=4.0, iou_input_dim=(256,256), iou_inter_dim=(256,256),
                                                  jitter_sigma_factor=None):
    # backbone
    backbone_net = backbones.resnet50(pretrained=backbone_pretrained)

    norm_scale = math.sqrt(1.0 / (out_feature_dim * filter_size * filter_size))

    
    # classifier
    clf_feature_extractor = clf_features.residual_bottleneck_comb(num_blocks=clf_feat_blocks, l2norm=clf_feat_norm,
                                                              final_conv=final_conv, norm_scale=norm_scale,
                                                              out_dim=out_feature_dim)
    initializer = clf_initializer.FilterInitializerLinear(filter_size=filter_size, filter_norm=init_filter_norm, feature_dim=out_feature_dim)
    optimizer = clf_optimizer.SteepestDescentLearn(num_iter=optim_iter, filter_size=filter_size, init_step_length=optim_init_step,
                                                   init_filter_reg=optim_init_reg, feature_dim=out_feature_dim,
                                                   init_gauss_sigma=init_gauss_sigma, num_dist_bins=num_dist_bins,
                                                   bin_displacement=bin_displacement, test_loss=test_loss, mask_init_factor=mask_init_factor)
    classifier = target_clf.LinearFilter(filter_size=filter_size, filter_initializer=initializer,
                                         filter_optimizer=optimizer, feature_extractor=clf_feature_extractor,
                                         output_activation=output_activation, jitter_sigma_factor=jitter_sigma_factor)    
    # Bounding box regressor
    # combine RGB and TIR by 2*
    bb_regressor = bbmodels.AtomIoUNet(input_dim=(4*128,4*256), pred_input_dim=iou_input_dim, pred_inter_dim=iou_inter_dim)
    # load pretrained model
    pretrainmodel_path='/home/lichao/projects/pytracking_lichao/pytracking/DiMP_nets/sdlearn_300_onlytestloss_lr_causal_mg30_iou_nocf_res50_lfilt512_coco/OptimTracker_ep0040.pth.tar'
    pretrainmodel = loading.torch_load_legacy(pretrainmodel_path)['net']
    usepretrain = True; updback = True; updcls = True; updbb = True

    if usepretrain:
        if updback:
            # update backbone
            backbone_dict = backbone_net.state_dict()
            pretrain_dict = {k[len('feature_extractor.'):]: v for k, v in pretrainmodel.items() if k[len('feature_extractor.'):] in backbone_dict}
            backbone_net.load_state_dict(pretrain_dict)

        if updcls:
            # update classifier
            pretrainmodel['classifier.feature_extractor.0.weight']=torch.cat((pretrainmodel['classifier.feature_extractor.0.weight'],pretrainmodel['classifier.feature_extractor.0.weight']),1)
            classifier_dict = classifier.state_dict()
            pretrain_dict = {k[len('classifier.'):]: v for k, v in pretrainmodel.items() if k[len('classifier.'):] in classifier_dict}
            #classifier_dict.update(pretrain_dict)
            classifier.load_state_dict(pretrain_dict)
        if updbb:
            # update Bounding box regressor
            
            bb_regressor_dict = bb_regressor.state_dict()
            pretrain_dict = {k[len('bb_regressor.'):]: v for k, v in pretrainmodel.items() if k[len('bb_regressor.'):] in bb_regressor_dict}
            bb_regressor.load_state_dict(pretrain_dict)

    net = OptimTracker(feature_extractor=backbone_net, classifier=classifier, bb_regressor=bb_regressor,
                       classification_layer=classification_layer, bb_regressor_layer=['layer2', 'layer3'])
    return net
def dimpnet50(filter_size=1, optim_iter=5, optim_init_step=1.0, optim_init_reg=0.01,
              classification_layer='layer3', feat_stride=16, backbone_pretrained=True, clf_feat_blocks=0,
              clf_feat_norm=True, init_filter_norm=False, final_conv=True,
              out_feature_dim=512, init_gauss_sigma=1.0, num_dist_bins=5, bin_displacement=1.0,
              mask_init_factor=4.0, iou_input_dim=(256, 256), iou_inter_dim=(256, 256),
              score_act='relu', act_param=None, target_mask_act='sigmoid',
              detach_length=float('Inf'), frozen_backbone_layers=()):

    # Backbone
    backbone_net = backbones.resnet50(pretrained=backbone_pretrained, frozen_layers=frozen_backbone_layers)

    # Feature normalization
    norm_scale = math.sqrt(1.0 / (out_feature_dim * filter_size * filter_size))

    # Classifier features
    if classification_layer == 'layer3':
        feature_dim = 256
    elif classification_layer == 'layer4':
        feature_dim = 512
    else:
        raise Exception

    clf_feature_extractor = clf_features.residual_bottleneck(feature_dim=feature_dim,
                                                             num_blocks=clf_feat_blocks, l2norm=clf_feat_norm,
                                                             final_conv=final_conv, norm_scale=norm_scale,
                                                             out_dim=out_feature_dim)

    # Initializer for the DiMP classifier
    initializer = clf_initializer.FilterInitializerLinear(filter_size=filter_size, filter_norm=init_filter_norm,
                                                          feature_dim=out_feature_dim)

    # Optimizer for the DiMP classifier
    optimizer = clf_optimizer.DiMPSteepestDescentGN(num_iter=optim_iter, feat_stride=feat_stride,
                                                    init_step_length=optim_init_step,
                                                    init_filter_reg=optim_init_reg, init_gauss_sigma=init_gauss_sigma,
                                                    num_dist_bins=num_dist_bins,
                                                    bin_displacement=bin_displacement,
                                                    mask_init_factor=mask_init_factor,
                                                    score_act=score_act, act_param=act_param, mask_act=target_mask_act,
                                                    detach_length=detach_length)

    ### Transformer
    init_transformer = transformer.Transformer(d_model=512, nhead=1, num_layers=1)

    # The classifier module
    classifier = target_clf.LinearFilter(filter_size=filter_size, filter_initializer=initializer,
                                         filter_optimizer=optimizer, feature_extractor=clf_feature_extractor, transformer=init_transformer)

    # Bounding box regressor
    bb_regressor = bbmodels.AtomIoUNet(input_dim=(4*128,4*256), pred_input_dim=iou_input_dim, pred_inter_dim=iou_inter_dim)

    # DiMP network
    net = DiMPnet(feature_extractor=backbone_net, classifier=classifier, bb_regressor=bb_regressor,  
                  classification_layer=classification_layer, bb_regressor_layer=['layer2', 'layer3'])
    return net
Exemple #6
0
def atom_resnet50(iou_input_dim=(256,256), iou_inter_dim=(256,256), backbone_pretrained=True):
    # backbone
    backbone_net = backbones.resnet50(pretrained=backbone_pretrained)

    # Bounding box regressor
    iou_predictor = bbmodels.AtomIoUNet(input_dim=(4*128,4*256), pred_input_dim=iou_input_dim, pred_inter_dim=iou_inter_dim)

    net = ATOMnet(feature_extractor=backbone_net, bb_regressor=iou_predictor, bb_regressor_layer=['layer2', 'layer3'],
                  extractor_grad=False)

    return net
Exemple #7
0
def atom_resnet18_DeT(iou_input_dim=(256,256), iou_inter_dim=(256,256), backbone_pretrained=True, merge_type='mean'):
    # backbones
    backbone_net = backbones.resnet18(pretrained=backbone_pretrained)
    backbone_net_depth = backbones.resnet18(pretrained=backbone_pretrained)

    # Bounding box regressor
    iou_predictor = bbmodels.AtomIoUNet(pred_input_dim=iou_input_dim, pred_inter_dim=iou_inter_dim)

    net = ATOMnet_DeT(feature_extractor=backbone_net, feature_extractor_depth=backbone_net_depth, bb_regressor=iou_predictor, bb_regressor_layer=['layer2', 'layer3'],
                  extractor_grad=False, merge_type=merge_type)

    return net
Exemple #8
0
def klcedimpnet18(filter_size=1, optim_iter=5, optim_init_step=1.0, optim_init_reg=0.01,
                  classification_layer='layer3', feat_stride=16, backbone_pretrained=True, clf_feat_blocks=1,
                  clf_feat_norm=True, init_filter_norm=False, final_conv=True,
                  out_feature_dim=256, gauss_sigma=1.0,
                  iou_input_dim=(256, 256), iou_inter_dim=(256, 256),
                  detach_length=float('Inf'), alpha_eps=0.0, train_feature_extractor=True,
                  init_uni_weight=None, optim_min_reg=1e-3, init_initializer='default', normalize_label=False,
                  label_shrink=0, softmax_reg=None, label_threshold=0, final_relu=False, init_pool_square=False,
                  frozen_backbone_layers=()):

    if not train_feature_extractor:
        frozen_backbone_layers = 'all'

    # Backbone
    backbone_net = backbones.resnet18(pretrained=backbone_pretrained, frozen_layers=frozen_backbone_layers)

    # Feature normalization
    norm_scale = math.sqrt(1.0 / (out_feature_dim * filter_size * filter_size))

    # Classifier features
    clf_feature_extractor = clf_features.residual_basic_block(num_blocks=clf_feat_blocks, l2norm=clf_feat_norm,
                                                              final_conv=final_conv, norm_scale=norm_scale,
                                                              out_dim=out_feature_dim, final_relu=final_relu)

    # Initializer for the DiMP classifier
    initializer = clf_initializer.FilterInitializerLinear(filter_size=filter_size, filter_norm=init_filter_norm,
                                                          feature_dim=out_feature_dim, init_weights=init_initializer,
                                                          pool_square=init_pool_square)

    # Optimizer for the DiMP classifier
    optimizer = clf_optimizer.PrDiMPSteepestDescentNewton(num_iter=optim_iter, feat_stride=feat_stride,
                                                          init_step_length=optim_init_step,
                                                          init_filter_reg=optim_init_reg, gauss_sigma=gauss_sigma,
                                                          detach_length=detach_length, alpha_eps=alpha_eps,
                                                          init_uni_weight=init_uni_weight,
                                                          min_filter_reg=optim_min_reg, normalize_label=normalize_label,
                                                          label_shrink=label_shrink, softmax_reg=softmax_reg,
                                                          label_threshold=label_threshold)

    # The classifier module
    classifier = target_clf.LinearFilter(filter_size=filter_size, filter_initializer=initializer,
                                         filter_optimizer=optimizer, feature_extractor=clf_feature_extractor)

    # Bounding box regressor
    bb_regressor = bbmodels.AtomIoUNet(pred_input_dim=iou_input_dim, pred_inter_dim=iou_inter_dim)

    # DiMP network
    net = DiMPnet(feature_extractor=backbone_net, classifier=classifier, bb_regressor=bb_regressor,
                  classification_layer=classification_layer, bb_regressor_layer=['layer2', 'layer3'])
    return net
Exemple #9
0
def L2dimpnet18(filter_size=1, optim_iter=5, optim_init_step=1.0, optim_init_reg=0.01,
              classification_layer='layer3', feat_stride=16, backbone_pretrained=True, clf_feat_blocks=1,
              clf_feat_norm=True, init_filter_norm=False, final_conv=True,
              out_feature_dim=256, iou_input_dim=(256, 256), iou_inter_dim=(256, 256),
              detach_length=float('Inf'), hinge_threshold=-999, gauss_sigma=1.0, alpha_eps=0):
    # Backbone
    backbone_net = backbones.resnet18(pretrained=backbone_pretrained)

    # Feature normalization
    norm_scale = math.sqrt(1.0 / (out_feature_dim * filter_size * filter_size))

    # Classifier features
    clf_feature_extractor = clf_features.residual_basic_block(num_blocks=clf_feat_blocks, l2norm=clf_feat_norm,
                                                              final_conv=final_conv, norm_scale=norm_scale,
                                                              out_dim=out_feature_dim)

    # Initializer for the DiMP classifier
    initializer = clf_initializer.FilterInitializerLinear(filter_size=filter_size, filter_norm=init_filter_norm,
                                                          feature_dim=out_feature_dim)

    # Optimizer for the DiMP classifier
    optimizer = clf_optimizer.DiMPL2SteepestDescentGN(num_iter=optim_iter, feat_stride=feat_stride,
                                                    init_step_length=optim_init_step, hinge_threshold=hinge_threshold,
                                                    init_filter_reg=optim_init_reg, gauss_sigma=gauss_sigma,
                                                    detach_length=detach_length, alpha_eps=alpha_eps)

    # The classifier module
    classifier = target_clf.LinearFilter(filter_size=filter_size, filter_initializer=initializer,
                                         filter_optimizer=optimizer, feature_extractor=clf_feature_extractor)

    # Bounding box regressor
    bb_regressor = bbmodels.AtomIoUNet(pred_input_dim=iou_input_dim, pred_inter_dim=iou_inter_dim)

    # DiMP network
    net = DiMPnet(feature_extractor=backbone_net, classifier=classifier, bb_regressor=bb_regressor,
                  classification_layer=classification_layer, bb_regressor_layer=['layer2', 'layer3'])
    return net
Exemple #10
0
def atom_resnet18(iou_input_dim=(256, 256),
                  iou_inter_dim=(256, 256),
                  backbone_pretrained=True,
                  cpu=False):
    # backbone
    backbone_net = backbones.resnet18(
        output_layers=['conv1', 'layer1', 'layer2', 'layer3'],
        pretrained=backbone_pretrained)

    # Bounding box regressor
    iou_predictor = bbmodels.AtomIoUNet(pred_input_dim=iou_input_dim,
                                        pred_inter_dim=iou_inter_dim,
                                        cpu=cpu)

    # if training CPU version, then need to fine-tune regressor
    regressor_grad = True if cpu else False

    net = ATOMnet(feature_extractor=backbone_net,
                  bb_regressor=iou_predictor,
                  bb_regressor_layer=['layer2', 'layer3'],
                  extractor_grad=False,
                  regressor_grad=regressor_grad)

    return net
Exemple #11
0
def kysnet_res50(filter_size=4,
                 optim_iter=3,
                 appearance_feature_dim=512,
                 optim_init_step=0.9,
                 optim_init_reg=0.1,
                 classification_layer='layer3',
                 backbone_pretrained=True,
                 clf_feat_blocks=0,
                 clf_feat_norm=True,
                 final_conv=True,
                 init_filter_norm=False,
                 mask_init_factor=3.0,
                 score_act='relu',
                 target_mask_act='sigmoid',
                 num_dist_bins=100,
                 bin_displacement=0.1,
                 detach_length=float('Inf'),
                 train_feature_extractor=True,
                 train_iounet=True,
                 iou_input_dim=(256, 256),
                 iou_inter_dim=(256, 256),
                 cv_kernel_size=3,
                 cv_max_displacement=9,
                 cv_stride=1,
                 init_gauss_sigma=1.0,
                 state_dim=8,
                 representation_predictor_dims=(64, 32),
                 gru_ksz=3,
                 conf_measure='max',
                 dimp_thresh=None):

    # ######################## backbone ########################
    backbone_net = backbones.resnet50(pretrained=backbone_pretrained)

    norm_scale = math.sqrt(
        1.0 / (appearance_feature_dim * filter_size * filter_size))

    # ######################## classifier ########################
    clf_feature_extractor = clf_features.residual_bottleneck(
        num_blocks=clf_feat_blocks,
        l2norm=clf_feat_norm,
        final_conv=final_conv,
        norm_scale=norm_scale,
        out_dim=appearance_feature_dim)

    # Initializer for the DiMP classifier
    initializer = clf_initializer.FilterInitializerLinear(
        filter_size=filter_size,
        filter_norm=init_filter_norm,
        feature_dim=appearance_feature_dim)

    # Optimizer for the DiMP classifier
    optimizer = clf_optimizer.DiMPSteepestDescentGN(
        num_iter=optim_iter,
        feat_stride=16,
        init_step_length=optim_init_step,
        init_filter_reg=optim_init_reg,
        init_gauss_sigma=init_gauss_sigma,
        num_dist_bins=num_dist_bins,
        bin_displacement=bin_displacement,
        mask_init_factor=mask_init_factor,
        score_act=score_act,
        act_param=None,
        mask_act=target_mask_act,
        detach_length=detach_length)

    # The classifier module
    classifier = target_clf.LinearFilter(
        filter_size=filter_size,
        filter_initializer=initializer,
        filter_optimizer=optimizer,
        feature_extractor=clf_feature_extractor)

    # Bounding box regressor
    bb_regressor = bbmodels.AtomIoUNet(input_dim=(4 * 128, 4 * 256),
                                       pred_input_dim=iou_input_dim,
                                       pred_inter_dim=iou_inter_dim)

    cost_volume_layer = cost_volume.CostVolume(cv_kernel_size,
                                               cv_max_displacement,
                                               stride=cv_stride,
                                               abs_coordinate_output=True)

    motion_response_predictor = resp_pred.ResponsePredictor(
        state_dim=state_dim,
        representation_predictor_dims=representation_predictor_dims,
        gru_ksz=gru_ksz,
        conf_measure=conf_measure,
        dimp_thresh=dimp_thresh)

    response_predictor = predictor_wrappers.PredictorWrapper(
        cost_volume_layer, motion_response_predictor)

    net = KYSNet(backbone_feature_extractor=backbone_net,
                 dimp_classifier=classifier,
                 predictor=response_predictor,
                 bb_regressor=bb_regressor,
                 classification_layer=classification_layer,
                 bb_regressor_layer=['layer2', 'layer3'],
                 train_feature_extractor=train_feature_extractor,
                 train_iounet=train_iounet)
    return net
Exemple #12
0
def dimpnet50(filter_size=1,
              optim_iter=5,
              optim_init_step=1.0,
              optim_init_reg=0.01,
              classification_layer='layer3',
              feat_stride=16,
              backbone_pretrained=True,
              clf_feat_blocks=0,
              clf_feat_norm=True,
              init_filter_norm=False,
              final_conv=True,
              out_feature_dim=512,
              init_gauss_sigma=1.0,
              num_dist_bins=5,
              bin_displacement=1.0,
              mask_init_factor=4.0,
              iou_input_dim=(256, 256),
              iou_inter_dim=(256, 256),
              score_act='relu',
              act_param=None,
              target_mask_act='sigmoid',
              detach_length=float('Inf')):
    # Backbone
    backbone_net = backbones.resnet50(pretrained=backbone_pretrained)

    # Feature normalization
    norm_scale = math.sqrt(1.0 / (out_feature_dim * filter_size * filter_size))

    # Classifier features
    clf_feature_extractor = clf_features.residual_bottleneck(
        num_blocks=clf_feat_blocks,
        l2norm=clf_feat_norm,
        final_conv=final_conv,
        norm_scale=norm_scale,
        out_dim=out_feature_dim)

    # Initializer for the DiMP classifier
    initializer = clf_initializer.FilterInitializerLinear(
        settings=settings,
        filter_size=filter_size,
        filter_norm=init_filter_norm,
        feature_dim=out_feature_dim)

    # Optimizer for the DiMP classifier
    optimizer = clf_optimizer.DiMPSteepestDescentGN(
        settings=settings,
        num_iter=optim_iter,
        feat_stride=feat_stride,
        init_step_length=optim_init_step,
        init_filter_reg=optim_init_reg,
        init_gauss_sigma=init_gauss_sigma,
        num_dist_bins=num_dist_bins,
        bin_displacement=bin_displacement,
        mask_init_factor=mask_init_factor,
        score_act=score_act,
        act_param=act_param,
        mask_act=target_mask_act,
        detach_length=detach_length)
    print(
        'Song in ltr.models.tracking.DiMPnet_rgbd_blend1.py line 233, before classifier, target_clf.LinearFilter ...'
    )
    # The classifier module
    classifier = target_clf.LinearFilter(
        settings=settings,
        filter_size=filter_size,
        filter_initializer=initializer,
        filter_optimizer=optimizer,
        feature_extractor=clf_feature_extractor)
    # Bounding box regressor for rgb
    bb_regressor = bbmodels.AtomIoUNet(settings=settings,
                                       input_dim=(4 * 128, 4 * 256),
                                       pred_input_dim=iou_input_dim,
                                       pred_inter_dim=iou_inter_dim)
    print(
        'Song in ltr.models.tracking.DiMPnet_rgbd_blend1.py line 240, dimpnet50 model_constructor ...'
    )
    # DiMP network
    net = DiMPnet_rgbd_blend1(settings=settings,
                              feature_extractor=backbone_net,
                              classifier=classifier,
                              bb_regressor=bb_regressor,
                              classification_layer=classification_layer,
                              bb_regressor_layer=['layer2', 'layer3'])
    return net