def update_hyperopt_params_with_defaults(hyperopt_params): set_default_value(hyperopt_params, STRATEGY, {}) set_default_value(hyperopt_params, EXECUTOR, {}) set_default_value(hyperopt_params, "split", VALIDATION) set_default_value(hyperopt_params, "output_feature", COMBINED) set_default_value(hyperopt_params, "metric", LOSS) set_default_value(hyperopt_params, "goal", MINIMIZE) set_default_values(hyperopt_params[STRATEGY], {TYPE: "random"}) strategy = get_from_registry(hyperopt_params[STRATEGY][TYPE], sampler_registry) strategy_defaults = { k: v for k, v in strategy.__dict__.items() if k in get_class_attributes(strategy) } set_default_values( hyperopt_params[STRATEGY], strategy_defaults, ) set_default_values(hyperopt_params[EXECUTOR], {TYPE: "serial"}) executor = get_from_registry(hyperopt_params[EXECUTOR][TYPE], executor_registry) executor_defaults = { k: v for k, v in executor.__dict__.items() if k in get_class_attributes(executor) } set_default_values( hyperopt_params[EXECUTOR], executor_defaults, )
def update_hyperopt_params_with_defaults(hyperopt_params): from ludwig.hyperopt.execution import executor_registry set_default_value(hyperopt_params, EXECUTOR, {}) set_default_value(hyperopt_params, "split", VALIDATION) set_default_value(hyperopt_params, "output_feature", COMBINED) set_default_value(hyperopt_params, "metric", LOSS) set_default_value(hyperopt_params, "goal", MINIMIZE) set_default_values(hyperopt_params[EXECUTOR], {TYPE: "ray"}) executor = get_from_registry(hyperopt_params[EXECUTOR][TYPE], executor_registry) executor_defaults = { k: v for k, v in executor.__dict__.items() if k in get_class_attributes(executor) } set_default_values( hyperopt_params[EXECUTOR], executor_defaults, )