Exemple #1
0
 def create_inference_dataset(self, dataset, tag, config,
                              training_set_metadata):
     if self.backend.df_engine.partitioned:
         return PartitionedDataset(
             dataset, get_proc_features(config),
             training_set_metadata.get(DATA_TRAIN_HDF5_FP))
     else:
         return PandasDataset(dataset, get_proc_features(config),
                              training_set_metadata.get(DATA_TRAIN_HDF5_FP))
Exemple #2
0
 def create_inference_dataset(self, dataset, tag, config,
                              training_set_metadata):
     """We don't use TFRecord for inference."""
     if self.backend.df_engine.partitioned:
         raise ValueError(
             'Batch inference not supported with TFRecord format at this time'
         )
     else:
         return PandasDataset(dataset, get_proc_features(config),
                              training_set_metadata.get(DATA_TRAIN_HDF5_FP))
Exemple #3
0
 def create_dataset(self, dataset, tag, config, training_set_metadata):
     return Dataset(dataset, get_proc_features(config),
                    training_set_metadata.get(DATA_TRAIN_HDF5_FP))
Exemple #4
0
 def create(self, dataset: Union[str, DataFrame], config: Dict[str, Any],
            training_set_metadata: Dict[str, Any]):
     return RayDataset(dataset, get_proc_features(config),
                       training_set_metadata, self.backend)
Exemple #5
0
 def create(self, dataset: DataFrame, config: Dict[str, Any],
            training_set_metadata: Dict[str, Any]):
     return RayDataset(dataset, get_proc_features(config),
                       training_set_metadata)