def create_inference_dataset(self, dataset, tag, config, training_set_metadata): if self.backend.df_engine.partitioned: return PartitionedDataset( dataset, get_proc_features(config), training_set_metadata.get(DATA_TRAIN_HDF5_FP)) else: return PandasDataset(dataset, get_proc_features(config), training_set_metadata.get(DATA_TRAIN_HDF5_FP))
def create_inference_dataset(self, dataset, tag, config, training_set_metadata): """We don't use TFRecord for inference.""" if self.backend.df_engine.partitioned: raise ValueError( 'Batch inference not supported with TFRecord format at this time' ) else: return PandasDataset(dataset, get_proc_features(config), training_set_metadata.get(DATA_TRAIN_HDF5_FP))
def create_dataset(self, dataset, tag, config, training_set_metadata): return Dataset(dataset, get_proc_features(config), training_set_metadata.get(DATA_TRAIN_HDF5_FP))
def create(self, dataset: Union[str, DataFrame], config: Dict[str, Any], training_set_metadata: Dict[str, Any]): return RayDataset(dataset, get_proc_features(config), training_set_metadata, self.backend)
def create(self, dataset: DataFrame, config: Dict[str, Any], training_set_metadata: Dict[str, Any]): return RayDataset(dataset, get_proc_features(config), training_set_metadata)