Exemple #1
0
def test_parameter_slicing():
    # Tests whether parameters coming from a Fit can be sliced by a data handle,
    # i.e. fit.params[data_handle]

    def dummy(t, p1, p2, p3):
        return t * p1 + t * p2 * p2 + t * p3 * p3 * p3

    model = Model("dummy",
                  dummy,
                  p2=Parameter(2),
                  p3=Parameter(3),
                  p1=Parameter(1))
    fit = Fit(model)
    data_set = fit._add_data("data1", [1, 1, 1], [1, 2, 3],
                             {"dummy/p2": "dummy/p2_b"})
    parameter_slice = fit.params[data_set]
    assert parameter_slice["dummy/p1"].value == 1
    assert parameter_slice["dummy/p2"].value == 2
    assert parameter_slice["dummy/p3"].value == 3

    data_set2 = fit._add_data("data2", [1, 1, 1], [1, 2, 3],
                              {"dummy/p2": "dummy/p2_c"})
    fit.params["dummy/p2_c"] = 5
    parameter_slice = fit.params[data_set]
    assert parameter_slice["dummy/p2"].value == 2
    parameter_slice = fit.params[data_set2]
    assert parameter_slice["dummy/p2"].value == 5
Exemple #2
0
def test_model_defaults():
    """Test whether model defaults propagate to the fit object correctly"""
    def g(data, mu, sig, a, b, c, d, e, f, q):
        del sig, a, b, c, d, e, f, q
        return (data - mu) * 2

    model = Model("M", g, f=Parameter(5))
    fit = Fit(model)
    fit._add_data("test", [1, 2, 3], [2, 3, 4])
    fit._add_data("test2", [1, 2, 3], [2, 3, 4], params={"M/f": "f/new"})
    fit._build_fit()

    assert fit["M/a"].value == Parameter().value
    assert fit.params["M/a"].value == Parameter().value
    assert fit.params["f/new"].value == 5
    assert fit.params["M/f"].value == 5

    # Check whether each parameter is actually unique
    fit.params["f/new"] = 6
    assert fit.params["f/new"].value == 6
    assert fit.params["M/f"].value == 5

    # Test whether providing a default for a parameter that doesn't exist throws
    with pytest.raises(AssertionError):
        Model("M", g, z=Parameter(5))

    # Verify that the defaults are in fact copies
    default = Parameter(5)
    model = Model("M", g, f=default)
    model._params["M/f"].value = 6
    assert default.value == 5
Exemple #3
0
def test_plotting():
    x = np.arange(10.0) / 100.0
    y = [
        1.37272429,
        1.14759176,
        1.2080786,
        1.79293398,
        1.22606946,
        1.55293523,
        1.73564261,
        1.49623027,
        1.81209629,
        1.69464097,
    ]

    F = Fit(
        Model(
            "exponential",
            exp_charge,
            jacobian=exp_charge_jac,
            mag=Parameter(value=1.0),
            k=Parameter(value=1.0),
        ))
    F._add_data("exponential", x, y)
    F.fit()
    profile = F.profile_likelihood("exponential/k")

    profile.plot()
    profile.plot_relations()
Exemple #4
0
def test_custom_legend_labels():
    """Test whether users can provide a custom label for plotting"""
    def test_labels(labels):
        for legend_entry, label in zip(plt.gca().get_legend().texts, labels):
            assert label == legend_entry.get_text()

    fit = Fit(odijk("m"))
    fit._add_data("data_1", [1, 2, 3], [2, 3, 4])
    fit.plot()
    test_labels(["data_1 (model)", "data_1 (data)"])
    plt.gca().clear()
    fit.plot(label="custom label")
    test_labels(["custom label (model)", "custom label (data)"])
def test_parameter_inversion():
    def f(independent, a, b):
        return a + b * independent

    def f_jac(independent, a, b):
        del a, b
        return np.vstack((np.ones((1, len(independent))), independent))

    def g(independent, a, d, b):
        return a - b * independent + d * independent * independent

    def g_jac(independent, a, d, b):
        del a, d, b
        return np.vstack((np.ones(
            (1, len(independent))), independent * independent, -independent))

    def f_der(independent, a, b):
        del independent, a
        return b * np.ones((len(x)))

    def g_der(independent, a, d, b):
        del independent, a
        return -b * np.ones((len(independent))) + 2.0 * d * independent

    x = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
    a_true = 5.0
    b_true = np.array([1.0, 2.0, 3.0, 4.0, 10.0])
    f_data = f(x, a_true, b_true)
    model = Model("f", f, jacobian=f_jac, derivative=f_der)
    fit = Fit(model)
    fit._add_data("test", x, f_data)
    fit.params["f/a"].value = a_true
    fit.params["f/b"].value = 1.0
    np.testing.assert_allclose(
        parameter_trace(model, fit.params, "f/b", x, f_data), b_true)

    a_true = 5.0
    b_true = 3.0
    d_true = np.array([1.0, 2.0, 3.0, 4.0, 10.0])
    f_plus_g_data = f(x, a_true, b_true) + g(x, a_true, d_true, b_true)
    model = Model("f", f, jacobian=f_jac, derivative=f_der) + Model(
        "f", g, jacobian=g_jac, derivative=g_der)
    fit = Fit(model)
    fit._add_data("test", x, f_data)
    fit.params["f/a"].value = a_true
    fit.params["f/b"].value = b_true
    fit.params["f/d"].value = 1.0
    np.testing.assert_allclose(
        parameter_trace(model, fit.params, "f/d", x, f_plus_g_data), d_true)
Exemple #6
0
def test_jacobian_test_fit():
    def f(independent, a, b):
        return a + b * independent

    def f_jac(independent, a, b):
        del a, b
        return np.vstack((np.ones((1, len(independent))), independent))

    def f_der(independent, a, b):
        del a
        return b * np.ones((len(independent)))

    def f_jac_wrong(independent, a, b):
        del a, b
        return np.vstack((2.0 * np.ones((1, len(independent))), independent))

    x = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
    a_true, b_true = (5.0, 5.0)
    f_data = f(x, a_true, b_true)
    model = Model("f", f, jacobian=f_jac, derivative=f_der)
    fit = Fit(model)
    fit._add_data("test", x, f_data)
    fit.params["f/a"].value = a_true
    fit.params["f/b"].value = b_true
    assert fit.verify_jacobian(fit.params.values)

    model_bad = Model("f", f, jacobian=f_jac_wrong, derivative=f_der)
    fit = Fit(model_bad)
    fit._add_data("test", x, f_data)
    fit.params["f/a"].value = a_true
    fit.params["f/b"].value = b_true
    assert not fit.verify_jacobian(fit.params.values)

    with pytest.raises(ValueError):
        assert odijk("WLC").verify_jacobian([1.0, 2.0, 3.0], [1.0, 2.0])

    with pytest.raises(ValueError):
        odijk("WLC").verify_derivative([1, 2, 3], [1, 2, 3])
Exemple #7
0
def test_no_jac():
    x, y = test_data()

    linear_model = Model("linear", linear_func()["model_function"])
    linear_fit = Fit(linear_model)
    linear_fit._add_data("test", x, y, {"linear/a": 5})
    linear_fit.fit()

    with pytest.raises(NotImplementedError):
        linear_fit.cov
Exemple #8
0
def test_fit_metrics(model_funcs, sigma, aic, aicc, bic):
    x, y = test_data()

    fit = Fit(Model("linear", **model_funcs()))
    fit._add_data("test", x, y)
    fit.fit()

    np.testing.assert_allclose(fit.sigma[0], sigma)
    np.testing.assert_allclose(fit.aic, aic)
    np.testing.assert_allclose(fit.aicc, aicc)
    np.testing.assert_allclose(fit.bic, bic)
Exemple #9
0
    def validate_profile(name, func, jac, x, y, parameter, stderr, lb, ub):
        F = Fit(Model(name, func, jacobian=jac))
        F._add_data(name, x, y)
        F.fit()
        profile = F.profile_likelihood(name + "/" + parameter)

        assert (F[name + "/" + parameter].stderr - stderr) < eps
        assert F[name + "/" + parameter].profile == profile
        assert abs(profile.lower_bound - lb) < eps
        assert abs(profile.upper_bound - ub) < eps
        assert len(profile.chi2) == len(profile.p)

        # Validate asymptotic confidence intervals based on comparing them with the profiles
        assert abs(F[name + "/" + parameter].ci(0.95)[0] -
                   profile.lower_bound) < 1e-2
        assert abs(F[name + "/" + parameter].ci(0.95)[1] -
                   profile.upper_bound) < 1e-2
Exemple #10
0
def test_parameter_availability():
    x = np.arange(10)
    y = np.array([
        8.24869073,
        7.77648717,
        11.9436565,
        14.85406276,
        22.73081526,
        20.39692261,
        32.48962353,
        31.4775862,
        37.63807819,
        40.50125925,
    ])

    def linear(independent, a=1, b=1):
        return a * independent + b

    def linear_jac(independent, a, b):
        del a, b
        return np.vstack((independent, np.ones(len(independent))))

    linear_model = Model("linear", linear, jacobian=linear_jac)
    linear_fit = Fit(linear_model)

    with pytest.raises(IndexError):
        linear_fit.params["linear/a"]

    linear_fit._add_data("test", x, y, {"linear/a": 5})
    linear_fit = Fit(linear_model)

    # Parameter linear_a is not actually a parameter in the fit object at this point (it was set
    # to 5)
    with pytest.raises(IndexError):
        linear_fit.params["linear/a"]

    linear_fit._add_data("test", x, y)
    assert "linear/a" in linear_fit.params
Exemple #11
0
def test_non_identifiability():
    x = np.arange(10.0) / 100.0
    y = [
        1.37272429,
        1.14759176,
        1.2080786,
        1.79293398,
        1.22606946,
        1.55293523,
        1.73564261,
        1.49623027,
        1.81209629,
        1.69464097,
    ]

    F = Fit(
        Model(
            "exponential",
            exp_charge,
            jacobian=exp_charge_jac,
            mag=Parameter(value=1.0),
            k=Parameter(value=1.0),
        ))
    F._add_data("exponential", x, y)
    F.fit()
    num_steps = 100
    profile = F.profile_likelihood("exponential/k", num_steps=num_steps)

    # This model does not have an upper bound for its 95% confidence interval (we're fitting a
    # constant with an exponential rise. The exponential rise is non-identifiable since it can be
    # infinitely fast.
    assert profile.lower_bound is not None
    assert profile.upper_bound is None
    assert len(profile.p) < 2 * num_steps
    assert str(profile) == dedent("""\
        Profile likelihood for exponential/k (121 points)
          - chi2
          - p
          - lower_bound: 20.36
          - upper_bound: undefined
        """)
Exemple #12
0
def test_asymptotic_errs_all_parameters():
    """Tests whether the covariance matrix is computed correctly"""
    x, y = test_data()

    quadratic_fit = Fit(Model("quadratic", **quadratic_func()))
    quadratic_fit._add_data("test", x, y)
    quadratic_fit.fit()

    np.testing.assert_allclose(
        quadratic_fit.cov,
        np.array([
            [0.001465292918082, -0.013187636262741, 0.017583515016988],
            [-0.013187636262741, 0.128066601040397, -0.200452071193665],
            [0.017583515016988, -0.200452071193665, 0.478271608462078],
        ]),
    )

    np.testing.assert_allclose(quadratic_fit["quadratic/a"].stderr,
                               0.038279144688489905)
    np.testing.assert_allclose(quadratic_fit["quadratic/b"].stderr,
                               0.35786394207910477)
    np.testing.assert_allclose(quadratic_fit["quadratic/c"].stderr,
                               0.6915718389741429)
Exemple #13
0
def test_integration_test_fitting():
    def linear(independent, a, b):
        f = a * independent + b
        return f

    def linear_jac(independent, a, b):
        del a, b
        jacobian = np.vstack((independent, np.ones(len(independent))))
        return jacobian

    def linear_jac_wrong(independent, a, b):
        del a, b
        jacobian = np.vstack((np.ones(len(independent)), independent))
        return jacobian

    assert Model("M", linear, jacobian=linear_jac).has_jacobian
    assert not Model("M", linear).has_jacobian
    with pytest.raises(RuntimeError):
        Model("M", linear).jacobian([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])
    with pytest.raises(RuntimeError):
        Model("M", linear).derivative([1.0, 2.0, 3.0], [1.0, 2.0, 3.0])

    model = Model("M", linear, jacobian=linear_jac_wrong)
    assert not model.verify_jacobian([1, 2, 3], [1, 1])

    model = Model("M", linear, jacobian=linear_jac)
    fit = Fit(model)
    x = np.arange(3)
    for i in np.arange(3):
        y = 4.0 * x * i + 5.0
        fit._add_data(f"test {i}", x, y, params={"M/a": f"slope_{i}"})

    y = 4.0 * x + 10.0
    fit._add_data("test x", x, y, params={"M/a": "slope_1", "M/b": "M/b_2"})

    # Test whether fixed parameters are not fitted
    fit["slope_2"].fixed = True
    fit.fit()
    assert np.isclose(fit["slope_2"].value, 0)

    fit["slope_2"].fixed = False
    fit.fit()
    assert len(fit.params.values) == 5
    assert len(fit.params) == 5
    assert fit.n_residuals == 12
    assert fit.n_params == 5

    assert np.isclose(fit.params["slope_0"].value, 0)
    assert np.isclose(fit.params["slope_1"].value, 4)
    assert np.isclose(fit.params["slope_2"].value, 8)
    assert np.isclose(fit.params["M/b"].value, 5)
    assert np.isclose(fit.params["M/b_2"].value, 10)

    # Verify that fixed parameters are correctly removed from sub-models
    model = Model("M", linear, jacobian=linear_jac)
    fit = Fit(model)
    fit._add_data("test1", x, 4.0 * x + 5.0, {"M/a": 4})
    fit._add_data("test2", x, 8.0 * x + 10.0, {"M/b": 10})
    fit.fit()
    assert np.isclose(fit.params["M/b"].value, 5)
    assert np.isclose(fit.params["M/a"].value, 8)

    fit["M/a"].upper_bound = 4
    fit["M/a"].value = 5
    with pytest.raises(ValueError):
        fit.fit()
Exemple #14
0
def test_model_fit_object_linking():
    def fetch_params(parameters, indices):
        p_list = list(parameters.keys())
        return [p_list[x] if x is not None else None for x in indices]

    def g(data, mu, sig, a, b, c, d, e, f, q):
        del sig, a, b, c, d, e, f, q
        return (data - mu) * 2

    def h(data, mu, e, q, c, r):
        del e, q, c, r
        return (data - mu) * 2

    all_params = ["M/mu", "M/sig", "M/a", "M/b", "M/d", "M/e", "M/f", "M/q"]
    m = Model("M", g, d=Parameter(4))
    m2 = Model("M", h)

    # Model should not be built
    fit = Fit(m, m2)
    fit[m]._add_data("test", [1, 2, 3], [2, 3, 4], {"M/c": 4})
    assert fit.dirty

    # Asking for the parameters should have triggered a build
    fit.params
    assert not fit.dirty
    assert set(fit.params.keys()) == set(all_params)

    # Check the parameters included in the model
    np.testing.assert_allclose(fit.datasets[id(m)]._conditions[0].p_external,
                               [0, 1, 2, 3, 5, 6, 7, 8])
    assert np.all(fit.datasets[id(m)]._conditions[0].p_local ==
                  [None, None, None, None, 4, None, None, None, None])
    params = ["M/mu", "M/sig", "M/a", "M/b", None, "M/d", "M/e", "M/f", "M/q"]
    assert fetch_params(
        fit.params,
        fit.datasets[id(m)]._conditions[0]._p_global_indices) == params

    # Loading data should make it dirty again
    fit[m]._add_data("test2", [1, 2, 3], [2, 3, 4], {
        "M/c": 4,
        "M/e": "M/e_new"
    })
    assert fit.dirty

    # Check the parameters included in the model
    fit._rebuild()
    np.testing.assert_allclose(fit.datasets[id(m)]._conditions[0].p_external,
                               [0, 1, 2, 3, 5, 6, 7, 8])
    assert np.all(fit.datasets[id(m)]._conditions[0].p_local ==
                  [None, None, None, None, 4, None, None, None, None])
    params = ["M/mu", "M/sig", "M/a", "M/b", None, "M/d", "M/e", "M/f", "M/q"]
    assert fetch_params(
        fit.params,
        fit.datasets[id(m)]._conditions[0]._p_global_indices) == params

    np.testing.assert_allclose(fit.datasets[id(m)]._conditions[1].p_external,
                               [0, 1, 2, 3, 5, 6, 7, 8])
    assert np.all(fit.datasets[id(m)]._conditions[1].p_local ==
                  [None, None, None, None, 4, None, None, None, None])
    params = [
        "M/mu", "M/sig", "M/a", "M/b", None, "M/d", "M/e_new", "M/f", "M/q"
    ]
    assert fetch_params(
        fit.params,
        fit.datasets[id(m)]._conditions[1]._p_global_indices) == params

    # Load data into model 2
    fit[m2]._add_data("test", [1, 2, 3], [2, 3, 4], {"M/c": 4, "M/r": 6})
    assert fit.dirty

    # Since M/r is set fixed in that model, it should not appear as a parameter
    all_params = [
        "M/mu", "M/sig", "M/a", "M/b", "M/d", "M/e", "M/e_new", "M/f", "M/q"
    ]
    assert set(fit.params.keys()) == set(all_params)

    all_params = [
        "M/mu", "M/sig", "M/a", "M/b", "M/d", "M/e", "M/e_new", "M/f", "M/q",
        "M/r"
    ]
    fit[m2]._add_data("test2", [1, 2, 3], [2, 3, 4], {"M/c": 4, "M/e": 5})
    assert set(fit.params.keys()) == set(all_params)
    np.testing.assert_allclose(fit.datasets[id(m)]._conditions[0].p_external,
                               [0, 1, 2, 3, 5, 6, 7, 8])
    assert np.all(fit.datasets[id(m)]._conditions[0].p_local ==
                  [None, None, None, None, 4, None, None, None, None])
    params = ["M/mu", "M/sig", "M/a", "M/b", None, "M/d", "M/e", "M/f", "M/q"]
    assert fetch_params(
        fit.params,
        fit.datasets[id(m)]._conditions[0]._p_global_indices) == params

    np.testing.assert_allclose(fit.datasets[id(m)]._conditions[1].p_external,
                               [0, 1, 2, 3, 5, 6, 7, 8])
    assert np.all(fit.datasets[id(m)]._conditions[1].p_local ==
                  [None, None, None, None, 4, None, None, None, None])
    params = [
        "M/mu", "M/sig", "M/a", "M/b", None, "M/d", "M/e_new", "M/f", "M/q"
    ]
    assert fetch_params(
        fit.params,
        fit.datasets[id(m)]._conditions[1]._p_global_indices) == params

    np.testing.assert_allclose(fit.datasets[id(m2)]._conditions[0].p_external,
                               [0, 1, 2])
    assert np.all(fit.datasets[id(m2)]._conditions[0].p_local ==
                  [None, None, None, 4, 6])
    params = ["M/mu", "M/e", "M/q", None, None]
    assert fetch_params(
        fit.params,
        fit.datasets[id(m2)]._conditions[0]._p_global_indices) == params

    params = ["M/mu", None, "M/q", None, "M/r"]
    assert fetch_params(
        fit.params,
        fit.datasets[id(m2)]._conditions[1]._p_global_indices) == params

    fit.update_params(Params(**{"M/mu": 4, "M/sig": 6}))
    assert fit["M/mu"].value == 4
    assert fit["M/sig"].value == 6

    f2 = Fit(m)
    f2._add_data("test", [1, 2, 3], [2, 3, 4])
    f2["M/mu"].value = 12

    fit.update_params(f2)
    assert fit["M/mu"].value == 12

    with pytest.raises(RuntimeError):
        fit.update_params(5)  # noqa
Exemple #15
0
def test_data_loading():
    m = Model("M", lambda x, a: a * x)
    fit = Fit(m)
    fit._add_data("test", [1, np.nan, 3], [2, np.nan, 4])
    np.testing.assert_allclose(fit[m].data["test"].x, [1, 3])
    np.testing.assert_allclose(fit[m].data["test"].y, [2, 4])
    np.testing.assert_allclose(fit[m].data["test"].independent, [1, 3])
    np.testing.assert_allclose(fit[m].data["test"].dependent, [2, 4])

    # Name must be unique
    with pytest.raises(KeyError):
        fit._add_data("test", [1, 3, 5], [2, 4, 5])

    with pytest.raises(AssertionError):
        fit._add_data("test2", [1, 3], [2, 4, 5])

    with pytest.raises(AssertionError):
        fit._add_data("test3", [1, 3, 5], [2, 4])

    with pytest.raises(AssertionError):
        fit._add_data("test4", [[1, 3, 5]], [[2, 4, 5]])
Exemple #16
0
def test_asymptotic_errs_subset_parameters():
    """Check whether the asymptotic uncertainty handling is correct by checking a nested model

    Fixing a parameter in quadratic function converts it to a linear one. This should result in
    identical standard errors and covariance matrix"""
    x, y = test_data()

    linear_fit = Fit(Model("m", **linear_func()))
    linear_fit._add_data("test", x, y)
    linear_fit.fit()

    quadratic_fit = Fit(Model("m", **quadratic_func()))
    quadratic_fit._add_data("test", x, y)
    quadratic_fit["m/a"].fixed = True
    quadratic_fit.fit()

    np.testing.assert_allclose(linear_fit.cov, quadratic_fit.cov)
    np.testing.assert_allclose(quadratic_fit["m/b"].stderr,
                               linear_fit["m/a"].stderr)
    np.testing.assert_allclose(quadratic_fit["m/c"].stderr,
                               linear_fit["m/b"].stderr)
    assert quadratic_fit["m/a"].stderr is None
Exemple #17
0
def test_fd_variable_order():
    # Fit takes dependent, then independent
    m = odijk("M")
    fit = Fit(m)
    fit._add_data("test", [1, 2, 3], [2, 3, 4])
    np.testing.assert_allclose(fit[m].data["test"].x, [1, 2, 3])
    np.testing.assert_allclose(fit[m].data["test"].y, [2, 3, 4])

    fit[m]._add_data("test2", [1, 2, 3], [2, 3, 4])
    np.testing.assert_allclose(fit[m].data["test2"].x, [1, 2, 3])
    np.testing.assert_allclose(fit[m].data["test2"].y, [2, 3, 4])

    m = inverted_odijk("M")
    fit = Fit(m)
    fit._add_data("test", [1, 2, 3], [2, 3, 4])
    np.testing.assert_allclose(fit[m].data["test"].x, [1, 2, 3])
    np.testing.assert_allclose(fit[m].data["test"].y, [2, 3, 4])

    fit[m]._add_data("test2", [1, 2, 3], [2, 3, 4])
    np.testing.assert_allclose(fit[m].data["test2"].x, [1, 2, 3])
    np.testing.assert_allclose(fit[m].data["test2"].y, [2, 3, 4])

    # FdFit always takes f, d and maps it to the correct values
    m = odijk("M")
    fit = FdFit(m)

    # Test the FdFit interface
    fit.add_data("test", [1, 2, 3], [2, 3, 4])
    np.testing.assert_allclose(fit[m].data["test"].x, [1, 2, 3])
    np.testing.assert_allclose(fit[m].data["test"].y, [2, 3, 4])

    # Test the FdDatasets interface
    fit[m].add_data("test2", [3, 4, 5], [4, 5, 6])
    np.testing.assert_allclose(fit[m].data["test2"].x, [3, 4, 5])
    np.testing.assert_allclose(fit[m].data["test2"].y, [4, 5, 6])

    m = inverted_odijk("M")
    fit = FdFit(m)
    fit.add_data("test", [1, 2, 3], [2, 3, 4])
    np.testing.assert_allclose(fit[m].data["test"].x, [2, 3, 4])
    np.testing.assert_allclose(fit[m].data["test"].y, [1, 2, 3])

    # Test the FdDatasets interface
    fit[m].add_data("test2", [3, 4, 5], [4, 5, 6])
    np.testing.assert_allclose(fit[m].data["test2"].x, [4, 5, 6])
    np.testing.assert_allclose(fit[m].data["test2"].y, [3, 4, 5])
Exemple #18
0
def test_plotting():
    m = odijk("DNA")
    m2 = odijk("protein")

    # Test single model plotting
    fit = Fit(m)
    fit[m]._add_data("data_1", [1, 2, 3], [2, 3, 4])
    fit.plot()
    fit.plot("data_1")
    with pytest.raises(AssertionError):
        fit.plot("non-existent-data")

    fit.plot(overrides={"DNA/Lc": 12})
    with pytest.raises(KeyError):
        fit.plot(overrides={"DNA/c": 12})

    fit.plot(overrides={"DNA/Lc": 12}, independent=np.arange(1.0, 5.0, 1.0))

    with pytest.raises(KeyError):
        fit[m2].plot()

    # Test multi-model plotting
    fit = Fit(m, m2)
    fit[m]._add_data("data_1", [1, 2, 3], [2, 3, 4])
    fit[m]._add_data("dataset_2", [1, 2, 3], [2, 3, 4], {"DNA/Lc": "DNA/Lc_2"})
    fit[m2]._add_data("data_1", [1, 2, 3], [2, 3, 4])
    fit[m2]._add_data("dataset_2", [1, 2, 3], [2, 3, 4],
                      {"protein/Lc": "protein/Lc_2"})
    fit[m2]._add_data("dataset 3", [1, 2, 3], [2, 3, 4],
                      {"protein/Lc": "protein/Lc_2"})

    with pytest.raises(AssertionError):
        fit.plot()

    fit[m].plot()
    fit[m2].plot()
    fit[m].plot("data_1")

    with pytest.raises(AssertionError):
        fit.plot(m, "non-existent-data")

    fit[m2].plot("dataset 3")
    with pytest.raises(AssertionError):
        fit[m].plot("dataset 3")

    fit[m].plot(overrides={"DNA/Lc": 12})
    with pytest.raises(KeyError):
        fit[m].plot(overrides={"DNA/c": 12})

    independent = np.arange(0.15, 2, 0.25)
    params = [38.18281266, 0.37704827, 278.50103452, 4.11]
    odijk("WLC").verify_jacobian(independent, params, plot=1)

    params = [38.18281266, 0.37704827, 278.50103452, 4.11]
    fit = FdFit(odijk("WLC"))
    fit.add_data("dataset 3", [1, 2, 3], [2, 3, 4])
    plt.figure()
    fit.verify_jacobian(params, plot=1)

    # Test live fit plotting
    fit = Fit(m, m2)
    fit[m]._add_data("data_1", [1, 2, 3], [2, 3, 4])
    fit[m]._add_data("dataset_2", [1, 2, 3], [2, 3, 4], {"DNA/Lc": "DNA/Lc_2"})
    fit[m2]._add_data("data_1", [1, 2, 3], [2, 3, 4])
    fit.fit(show_fit=True, max_nfev=1)
Exemple #19
0
def test_fit_reprs():
    m = odijk("DNA")
    fit = Fit(m)
    d1 = fit._add_data("data_1", [1, 2, 3], [2, 3, 4])
    assert d1.__repr__() == "FitData(data_1, N=3)"

    d2 = fit._add_data("dataset_2", [1, 2, 3], [2, 3, 4],
                       {"DNA/Lc": "DNA/Lc_2"})
    assert d2.__repr__(
    ) == "FitData(dataset_2, N=3, Transformations: DNA/Lc → DNA/Lc_2)"

    f = Fit(m)
    assert f.__repr__()
    assert f._repr_html_()

    fit._add_data("data_3", [1, 2, 3], [2, 3, 4], {"DNA/Lc": 5})
    assert fit.__repr__()
    assert fit._repr_html_()

    m = inverted_odijk("DNA")
    fit = FdFit(m)
    fit._add_data("RecA", [1, 2, 3], [1, 2, 3])
    fit._add_data("RecA2", [1, 2, 3], [1, 2, 3])
    fit._add_data("RecA3", [1, 2, 3], [1, 2, 3])

    assert fit[m].__repr__(
    ) == "lumicks.pylake.FdDatasets(datasets={RecA, RecA2, RecA3}, N=9)"
    assert (
        fit[m].__str__() ==
        "Data sets:\n- FitData(RecA, N=3)\n- FitData(RecA2, N=3)\n- FitData(RecA3, N=3)\n"
    )
    assert fit[m]._repr_html_() == ("&ensp;&ensp;FitData(RecA, N=3)<br>\n"
                                    "&ensp;&ensp;FitData(RecA2, N=3)<br>\n"
                                    "&ensp;&ensp;FitData(RecA3, N=3)<br>\n")

    assert fit.__repr__() == "lumicks.pylake.FdFit(models={DNA}, N=9)"
    assert fit.__str__() == (
        "Fit\n  - Model: DNA\n  - Equation:\n"
        "      f(d) = argmin[f](norm(DNA.Lc * (1 - (1/2)*sqrt(kT/(f*DNA.Lp)) + f/DNA.St)-d))\n\n"
        "  - Data sets:\n    - FitData(RecA, N=3)\n    - FitData(RecA2, N=3)\n    "
        "- FitData(RecA3, N=3)\n\n  "
        "- Fitted parameters:\n"
        "    Name      Value  Unit      Fitted      Lower bound    Upper bound\n"
        "    ------  -------  --------  --------  -------------  -------------\n"
        "    DNA/Lp    40     [nm]      True                  0            100\n"
        "    DNA/Lc    16     [micron]  True                  0            inf\n"
        "    DNA/St  1500     [pN]      True                  0            inf\n"
        "    kT         4.11  [pN*nm]   False                 0              8"
    )