Exemple #1
0
    def _instantiate_layers(self):
        """
        定义两个全连接层和后面的分类回归层
        :return: 无
        """

        # We define layers as an array since they are simple fully connected
        # ones and it should be easy to tune it from the network config.
        # 定义两个全连接层, layer_size表示输出通道数
        self._layers = [
            snt.Linear(
                layer_size,
                name='fc_{}'.format(i),
                initializers={'w': self._rcnn_initializer},
                regularizers={'w': self.regularizer},
            ) for i, layer_size in enumerate(self._layer_sizes)
        ]
        # We define the classifier layer having a num_classes + 1 background
        # since we want to be able to predict if the proposal is background as
        # well.
        # 定义一个分类的全连接层(21类)
        self._classifier_layer = snt.Linear(
            self._num_classes + 1,
            name='fc_classifier',
            initializers={'w': self._cls_initializer},
            regularizers={'w': self.regularizer},
        )

        # The bounding box adjustment layer has 4 times the number of classes
        # We choose which to use depending on the output of the classifier
        # layer
        # 输出通道数为类别数目x4, 也就是4x20, 每个类别对应4个值, 这个是独立于分类器的输出
        self._bbox_layer = snt.Linear(
            self._num_classes * 4,
            name='fc_bbox',
            initializers={'w': self._bbox_initializer},
            regularizers={'w': self.regularizer})

        # ROIPoolingLayer is used to extract the feature from the feature map
        # using the proposals.
        # self._config.roi表示的就是选择crop, 7x7, valid的池化配置
        self._roi_pool = ROIPoolingLayer(self._config.roi, debug=self._debug)
        # RCNNTarget is used to define a minibatch and the correct values for
        # each of the proposals.
        # 用来定义minibatch和提案的正确值
        self._rcnn_target = RCNNTarget(self._num_classes,
                                       self._config.target,
                                       variances=self._variances,
                                       seed=self._seed)
        # RCNNProposal generates the final bounding boxes and tries to remove
        # duplicates.
        self._rcnn_proposal = RCNNProposal(self._num_classes,
                                           self._config.proposals,
                                           variances=self._variances)
Exemple #2
0
    def testLimits(self):
        """Tests that we're respecting the limits imposed by the config.
        """

        limits_config = self._config.copy()
        limits_config['class_max_detections'] = 2
        limits_config['total_max_detections'] = 3
        limits_config = EasyDict(limits_config)
        limits_num_classes = 2
        limits_model = RCNNProposal(limits_num_classes, limits_config)

        proposed_boxes = tf.constant([
            (self._batch_number, 0, 0, 1, 1),  # class 0
            (self._batch_number, 5, 5, 10, 10),  # class 1
            (self._batch_number, 15, 15, 20, 20),  # class 1
            (self._batch_number, 25, 25, 30, 30),  # class 0
            (self._batch_number, 35, 35, 40, 40),
            (self._batch_number, 38, 40, 65, 65),
            (self._batch_number, 70, 50, 90, 90),  # class 0
            (self._batch_number, 95, 95, 100, 100),
            (self._batch_number, 105, 105, 110, 110),  # class 1
        ])
        # All zeroes for our bbox_pred.
        bbox_pred = tf.constant([[0.] * limits_num_classes * 4] * 9)
        cls_prob = tf.constant([
            (0., 1., 0.),
            (0., .2, .8),
            (0., .45, .55),
            (0., .55, .45),
            (1., 0., 0.),
            (1., 0., 0.),
            (0., .95, .05),
            (1., 0., 0.),
            (0., .495, .505),
        ])

        proposal_prediction = self._run_rcnn_proposal(
            limits_model,
            proposed_boxes,
            bbox_pred,
            cls_prob,
        )
        labels = proposal_prediction['proposal_label']
        num_class0 = labels[labels == 0].shape[0]
        num_class1 = labels[labels == 1].shape[0]

        self.assertLessEqual(num_class0, limits_config.class_max_detections)
        self.assertLessEqual(num_class1, limits_config.class_max_detections)
        num_total = labels.shape[0]
        self.assertLessEqual(num_total, limits_config.total_max_detections)
Exemple #3
0
    def _instantiate_layers(self):
        # We define layers as an array since they are simple fully connected
        # ones and it should be easy to tune it from the network config.
        self._layers = [
            snt.Linear(
                layer_size,
                name="fc_{}".format(i),
                initializers={"w": self._rcnn_initializer},
                regularizers={"w": self.regularizer},
            )
            for i, layer_size in enumerate(self._layer_sizes)
        ]
        # We define the classifier layer having a num_classes + 1 background
        # since we want to be able to predict if the proposal is background as
        # well.
        self._classifier_layer = snt.Linear(
            self._num_classes + 1,
            name="fc_classifier",
            initializers={"w": self._cls_initializer},
            regularizers={"w": self.regularizer},
        )

        # The bounding box adjustment layer has 4 times the number of classes
        # We choose which to use depending on the output of the classifier
        # layer
        self._bbox_layer = snt.Linear(
            self._num_classes * 4,
            name="fc_bbox",
            initializers={"w": self._bbox_initializer},
            regularizers={"w": self.regularizer},
        )

        # ROIPoolingLayer is used to extract the feature from the feature map
        # using the proposals.
        self._roi_pool = ROIPoolingLayer(self._config.roi, debug=self._debug)
        # RCNNTarget is used to define a minibatch and the correct values for
        # each of the proposals.
        self._rcnn_target = RCNNTarget(
            self._num_classes,
            self._config.target,
            variances=self._variances,
            seed=self._seed,
        )
        # RCNNProposal generates the final bounding boxes and tries to remove
        # duplicates.
        self._rcnn_proposal = RCNNProposal(
            self._num_classes, self._config.proposals, variances=self._variances
        )
Exemple #4
0
    def setUp(self):
        super(RCNNProposalTest, self).setUp()

        self._num_classes = 3
        self._image_shape = (900, 1440)
        self._config = EasyDict({
            'class_max_detections': 100,
            'class_nms_threshold': 0.6,
            'total_max_detections': 300,
            'min_prob_threshold': 0.0,
        })

        self._equality_delta = 1e-03

        self._shared_model = RCNNProposal(self._num_classes, self._config)
        tf.reset_default_graph()