def __init__(self, app, store, memory=10):
        # type: (dash.Dash, dict, int) -> None
        '''
        Constructs EventListener.

        Args:
            app (dash.Dash): Dash application instance.
            store (dict): Dash store.
            memory (int, optional): Number of state changes to remember.
                Default: 10.

        Raises:
            EnforceError: If app is not an instance of dash.Dash.
            EnforceError: If app is not an instance of dict.
            EnforceError: If memory is less than 1.
        '''
        Enforce(app, 'instance of', dash.Dash)
        Enforce(store, 'instance of', dict)
        msg = 'Memory must be greater or equal to {b}. {a} < {b}.'
        Enforce(memory, '>=', 1, message=msg)
        # ----------------------------------------------------------------------

        self._app = app  # type: dash.Dash
        self.events = {}  # type: dict
        self.state = deque([deepcopy(store)], memory)  # type: deque
Exemple #2
0
def filter_data(data, column, comparator, value):
    # type: (DataFrame, str, str, Any) -> DataFrame
    '''
    Filters given data via comparator(column value, value).

    Legal comparators:

        * == ``lambda a, b: a == b``
        * != ``lambda a, b: a != b``
        *  > ``lambda a, b: a > b``
        * >= ``lambda a, b: a >= b``
        *  < ``lambda a, b: a < b``
        * <= ``lambda a, b: a <= b``
        *  ~ ``lambda a, b: bool(re.search(a, b, flags=re.I))``
        * !~ ``lambda a, b: not bool(re.search(a, b, flags=re.I))``

    Args:
        data (DataFrame): DataFrame to be filtered.
        column (str): Column name.
        comparator (str): String representation of comparator.
        value (object): Value to be compared.

    Raises:
        EnforceError: If data is not a DataFrame.
        EnforceError: If column is not a string.
        EnforceError: If column not in data columns.
        EnforceError: If illegal comparator given.
        EnforceError: If comparator is ~ or !~ and value is not a string.

    Returns:
        DataFrame: Filtered data.
    '''
    Enforce(data, 'instance of', DataFrame)
    msg = 'Column must be a str. {a} is not str.'
    Enforce(column, 'instance of', str, message=msg)
    eft.enforce_columns_in_dataframe([column], data)

    lut = {
        '==': lambda a, b: a == b,
        '!=': lambda a, b: a != b,
        '>': lambda a, b: a > b,
        '>=': lambda a, b: a >= b,
        '<': lambda a, b: a < b,
        '<=': lambda a, b: a <= b,
        '~': lambda a, b: bool(re.search(b, a, flags=re.I)),
        '!~': lambda a, b: not bool(re.search(b, a, flags=re.I)),
    }
    msg = 'Illegal comparator. {a} not in [==, !=, >, >=, <, <=, ~, !~].'
    Enforce(comparator, 'in', lut.keys(), message=msg)

    if comparator in ['~', '!~']:
        msg = 'Value must be string if comparator is ~ or !~. {a} is not str.'
        Enforce(value, 'instance of', str, message=msg)
    # --------------------------------------------------------------------------

    op = lut[comparator]
    mask = data[column].apply(lambda x: op(x, value))
    data = data[mask]
    return data
Exemple #3
0
    def test_init_instance_of(self):
        Food = self.Food
        Taco = self.Taco

        Enforce(1, 'instance of', int)
        Enforce(Taco(), 'instance of', Food)

        expected = r'1 is not instance of \[.*str.*, .*float.*\]\.'
        with self.assertRaisesRegexp(EnforceError, expected):
            Enforce(1, 'instance of', [str, float])
Exemple #4
0
    def test_init_not_instance_of(self):
        Food = self.Food
        Taco = self.Taco

        Enforce(1, 'not instance of', float)
        Enforce(Taco(), 'not instance of', Exception)

        expected = r'1 is instance of \[.*int.*, .*float.*\]\.'
        with self.assertRaisesRegexp(EnforceError, expected):
            Enforce(1, 'not instance of', [int, float])

        expected = r'.*Taco.* is instance of \[.*Food.*, .*float.*\]\.'
        with self.assertRaisesRegexp(EnforceError, expected):
            Enforce(Taco(), 'not instance of', [Food, float])
Exemple #5
0
    def __init__(
        self, message='', name='LogRuntime', level='info', suppress=False
    ):
        # type: (str, str, Union[str, int], bool) -> None
        '''
        Constructs a LogRuntime instance.

        Args:
            message (str, optional): Logging message. Default: ''.
            name (str, optional): Name of logger. Default: 'LogRuntime'.
            level (str or int, optional): Log level. Default: info.
            suppress (bool, optional): Whether to suppress logging.
                Default: False.

        Raises:
            EnforceError: If message is not a string.
            EnforceError: If name is not a string.
            EnforceError: If level is not legal logging level.
            EnforceError: If suppress is not a boolean.
        '''
        Enforce(message, 'instance of', str)
        Enforce(name, 'instance of', str)
        Enforce(suppress, 'instance of', bool)

        keys = ['debug', 'info', 'warn', 'error', 'critical', 'fatal']
        values = [getattr(logging, x.upper()) for x in keys]
        lut = dict(zip(keys, values))  # type: Dict[str, int]

        msg = 'Log level must be an integer or string. Given value: {a}. '
        lut_msg = ', '.join([f'{k}: {v}' for k, v in zip(keys, values)])
        msg += f'Legal values: [{lut_msg}].'

        level_ = 0
        if isinstance(level, int):
            Enforce(level, 'in', values, message=msg)

        elif isinstance(level, str):
            level = level.lower()
            Enforce(level, 'in', keys, message=msg)
            level_ = lut[level]

        else:
            raise EnforceError(msg.format(a=level))
        # ----------------------------------------------------------------------

        self._message = message
        self._stopwatch = StopWatch()
        self._logger = logging.getLogger(name)
        self._level = level_
        self._suppress = suppress
Exemple #6
0
def enforce_dataframes_are_equal(a, b):
    '''
    Endsures that DataFrames a and b have equal contents.

    Args:
        a (DataFrame): DataFrame A.
        b (DataFrame): DataFrame B.

    Raises:
        EnforceError: If a and b are not equal.
    '''
    # column names
    a_cols = set(a.columns.tolist())
    b_cols = b.columns.tolist()
    diff = a_cols.symmetric_difference(b_cols)
    diff = sorted(list(diff))

    msg = f'A and b have different columns: {diff}.'
    Enforce(len(diff), '==', 0, message=msg)

    # shape
    msg = 'A and b have different shapes. {a} != {b}.'
    Enforce(a.shape, '==', b.shape, message=msg)

    # NaNs cannot be compared
    a = a.fillna('---NAN---')
    b = b.fillna('---NAN---')

    # values
    errors = []
    for col in a.columns:
        mask = a[col] != b[col]
        a_vals = a.loc[mask, col].tolist()
        if len(a_vals) > 0:
            b_vals = b.loc[mask, col].tolist()
            error = [[col, av, bv] for av, bv in zip(a_vals, b_vals)]
            errors.extend(error)

    if len(errors) > 0:
        msg = DataFrame(errors, columns=['column', 'a', 'b']).to_string()
        msg = f'DatFrames have different values:\n{msg}'
        raise EnforceError(msg)

    #  records
    a = a.to_dict(orient='records')
    b = b.to_dict(orient='records')
    Enforce(a, '==', b)
Exemple #7
0
 def test_instance_of(self):
     e = Enforce(1, '==', 1)
     self.assertTrue(e.instance_of(1, int))
     self.assertFalse(e.instance_of(1, str))
     self.assertTrue(e.instance_of(1, [int, float]))
     self.assertFalse(e.instance_of(1, [str, dict]))
     self.assertTrue(e.instance_of(1, tuple([int, float])))
     self.assertFalse(e.instance_of(1, tuple([str, dict])))
Exemple #8
0
    def test_init_not_in(self):
        Foo = self.Foo
        Bar = self.Bar
        EnforceFooBar = self.EnforceFooBar

        # regular
        Enforce('foo', 'not in', ['taco', 'bar'])

        expected = r"foo is in \['foo', 'bar'\]\."
        with self.assertRaisesRegexp(EnforceError, expected):
            Enforce('foo', 'not in', ['foo', 'bar'])

        # attribute
        EnforceFooBar(Foo(1), 'not in', [Bar(2), Foo(2)], 'value')

        expected = r"value of <Foo> is in value of \[<Bar>, <Bar>\]\."
        with self.assertRaisesRegexp(EnforceError, expected):
            EnforceFooBar(Foo(1), 'not in', [Bar(1), Bar(3)], 'value')
Exemple #9
0
def post_to_slack(url, channel, message):
    # type (str, str, str) -> urllib.request.HttpRespons
    '''
    Post a given message to a given slack channel.

    Args:
        url (str): https://hooks.slack.com/services URL.
        channel (str): Channel name.
        message (str): Message to be posted.

    Raises:
        EnforceError: If URL is not a string.
        EnforceError: If URL does not start with https://hooks.slack.com/services
        EnforceError: If channel is not a string.
        EnforceError: If message is not a string.

    Returns:
        HTTPResponse: Response.
    '''
    Enforce(url, 'instance of', str)
    Enforce(channel, 'instance of', str)
    Enforce(message, 'instance of', str)
    msg = 'URL must begin with https://hooks.slack.com/services/. '
    msg += f'Given URL: {url}'
    Enforce(
        url.startswith('https://hooks.slack.com/services/'), '==', True,
        message=msg
    )
    # --------------------------------------------------------------------------

    request = urllib.request.Request(
        url,
        method='POST',
        headers={'Content-type': 'application/json'},
        data=json.dumps(dict(
            channel='#' + channel,
            text=message,
        )).encode(),
    )
    return urllib.request.urlopen(request)
Exemple #10
0
def truncate_list(items, size=3):
    # type (list, int) -> list
    '''
    Truncates a given list to a given size, replaces the middle contents with
    "...".

    Args:
        items (list): List of objects.
        size (int, optional): Size of output list.

    Raises:
        EnforceError: If item is not a list.
        EnforceError: If size is not an integer greater than -1.

    Returns:
        list: List of given size.
    '''
    Enforce(items, 'instance of', list, message='Items must be a list.')
    msg = 'Size must be an integer greater than -1. Given value: {a}.'
    Enforce(size, 'instance of', int, message=msg)
    Enforce(size, '>', -1, message=msg)
    # --------------------------------------------------------------------------

    if len(items) <= size:
        return items
    if size == 0:
        return []
    if size == 1:
        return items[:1]
    if size == 2:
        return [items[0], items[-1]]

    output = items[:size - 2]
    output.append('...')
    output.append(items[-1])
    return output
Exemple #11
0
def enforce_columns_in_dataframe(columns, data):
    # type: (List[str], DataFrame) -> None
    '''
    Ensure all given columns are in given dataframe columns.

    Args:
        columns (list[str]): Column names.
        data (DataFrame): DataFrame.

    Raises:
        EnforceError: If any column not found in data.columns.
    '''
    cols = data.columns.tolist()
    diff = set(columns).difference(cols)  # type: Any
    diff = sorted(list(diff))
    msg = f'Given columns not found in data. {diff} not in {cols}.'
    Enforce(diff, '==', [], message=msg)
Exemple #12
0
    def test_get_message_skip(self):
        e = Enforce(1, '==', 1)
        skip = [
            Comparator.IN,
            Comparator.NOT_IN,
            Comparator.INSTANCE_OF,
            Comparator.NOT_INSTANCE_OF,
        ]

        expected = '{a} is {comparator.message} {b}.'
        for item in skip:
            result = e._get_message(None, item)
            self.assertEqual(result, expected)

        expected = '{attribute} of {a} is {comparator.message} {attribute} of {b}.'
        for item in skip:
            result = e._get_message('foo', item)
            self.assertEqual(result, expected)
Exemple #13
0
    def listen(self, event, callback):
        # type: (str, Callable[[Any, dict, dash.Dash], dict]) -> EventListener
        '''
        Listen for given event and call given callback.

        Args:
            event (str): Event name.
            callback (function): Function of form (value, store, app) -> store.

        Raises:
            EnforceError: If event is not a string.

        Returns:
            EventListener: self.
        '''
        msg = 'Event name must be a string. {a} is not a string.'
        Enforce(event, 'instance of', str, message=msg)
        self.events[event] = callback
        return self
Exemple #14
0
    def emit(self, event, value):
        # type: (str, object) -> EventListener
        '''
        Call a registered callback guven an event and value.

        Args:
            event (str): Event name.
            value (object): Value to be given to callback.

        Raises:
            EnforceError: If event is not a string.

        Returns:
            EventListener: self.
        '''
        msg = 'Event name must be a string. {a} is not a string.'
        Enforce(event, 'instance of', str, message=msg)
        if event in self.events:
            store = self.events[event](value, self.store, self._app)
            self.state.append(deepcopy(store))
        return self
Exemple #15
0
def truncate_blob_lists(blob, size=3):
    # type: (dict, int) -> dict
    '''
    Truncates lists inside given JSON blob to a given size.

    Args:
        blob (dict): Blob to be truncated.
        size (int, optional): Size of lists. Default 3.

    Raises:
        EnforceError: If blob is not a dict.

    Returns:
        dict: Truncated blob.
    '''
    Enforce(blob, 'instance of', dict, message='Blob must be a dict.')
    # --------------------------------------------------------------------------

    def recurse_list(items, size):
        output = []
        for item in truncate_list(items, size=size):
            if isinstance(item, dict):
                item = recurse(item)
            elif isinstance(item, list):
                item = recurse_list(item, size)
            output.append(item)
        return output

    def recurse(item):
        output = {}
        for k, v in item.items():
            if isinstance(v, dict):
                output[k] = recurse(v)
            elif isinstance(v, list):
                output[k] = recurse_list(v, size)
            else:
                output[k] = v
        return output
    return recurse(blob)
Exemple #16
0
 def test_get_message_attribute(self):
     e = Enforce(1, '==', 1)
     result = e._get_message('foo', Comparator.EQ)
     expected = '{attribute} of {a} is {comparator.message} {attribute} of '
     expected += '{b}. {a_val} {comparator.negation_symbol} {b_val}.'
     self.assertEqual(result, expected)
Exemple #17
0
def get_plots(data, plots):
    # type: (List[dict], List[dict]) -> List[dcc.Graph]
    '''
    Gets a Dash plots using given dicts.
    Assumes dict element has all columns of table as keys.

    Args:
        data (list[dict]): List of dicts defining data.
        plots (list[dict]): List of dicts defining plots.

    Raises:
        EnforceError: If data is not a list of dicts.
        EnforceError: If plots is not a list of dicts.

    Returns:
        list[dcc.Graph]: Plots.
    '''
    msg = 'Data must be a list of dictionaries. Given value: {a}.'
    Enforce(data, 'instance of', list, message=msg)
    for item in data:
        Enforce(item, 'instance of', dict, message=msg)

    msg = 'Plots must be a list of dictionaries. Given value: {a}.'
    Enforce(plots, 'instance of', list, message=msg)
    for item in plots:
        Enforce(item, 'instance of', dict, message=msg)
# --------------------------------------------------------------------------

    data_ = DataFrame(data)
    if 'date' in data_.columns:
        data_.date = DatetimeIndex(data_.date)

    elems = []
    for i, x in enumerate(plots):
        plot = cfg.PlotItem(x)
        plot.validate()
        plot = plot.to_primitive()
        min_width = str(plot['min_width']) + '%'

        try:
            fig = sdt.get_figure(
                data_,
                filters=plot['filters'],
                group=plot['group'],
                pivot=plot['pivot'],
                **plot['figure'],
            )
            fig = dcc.Graph(
                id=f'plot-{i:02d}',
                className='plot',
                figure=fig,
                style={'min-width': min_width},
            )
        except (DataError, EnforceError):
            fig = html.Div(
                id=f'plot-{i:02d}',
                className='plot plot-error',
                style={'min-width': min_width},
                children=html.Div(
                    className='plot-error-container',
                    children=html.Div(
                        className='plot-error-message',
                        children='no data found'
                    )
                )
            )
        elems.append(fig)
    return elems
Exemple #18
0
 def test_gt(self):
     e = Enforce(1, '==', 1)
     self.assertTrue(e.gt(2, 1))
     self.assertFalse(e.gt(1, 1))
     self.assertFalse(e.gt(1, 2))
Exemple #19
0
 def test_get_type_name(self):
     e = Enforce(1, '==', 1)
     Taco = self.Taco
     expected = Taco().__class__.__name__
     result = e.get_type_name(Taco())
     self.assertEqual(result, expected)
Exemple #20
0
 def test_get_message_not_similar(self):
     e = Enforce(1, '==', 1)
     result = e._get_message('foo', Comparator.NOT_SIMILAR)
     expected = '{attribute} of {a} is {comparator.message} {attribute} of '
     expected += '{b}. Delta {delta} is not greater than epsilon {epsilon}.'
     self.assertEqual(result, expected)
Exemple #21
0
 def test_in(self):
     e = Enforce(1, '==', 1)
     self.assertTrue(e.in_(1, [1, 2]))
     self.assertFalse(e.in_(1, [2, 3]))
Exemple #22
0
def group_data(data, columns, metric, datetime_column='date'):
    # type: (DataFrame, Union[str, List[str]], str, str) -> DataFrame
    '''
    Groups given data by given columns according to given metric.
    If a legal time interval is given in the columns, then an additional special
    column of that same name is added to the data for grouping.

    Legal metrics:

        *   max ``lambda x: x.max()``
        *  mean ``lambda x: x.mean()``
        *   min ``lambda x: x.min()``
        *   std ``lambda x: x.std()``
        *   sum ``lambda x: x.sum()``
        *   var ``lambda x: x.var()``
        * count ``lambda x: x.count()``

    Legal time intervals:

        * year
        * quarter
        * month
        * two_week
        * week
        * day
        * hour
        * half_hour
        * quarter_hour
        * minute
        * second
        * microsecond

    Args:
        data (DataFrame): DataFrame to be grouped.
        columns (str or list[str]): Columns to group data by.
        metric (str): String representation of metric.
        datetime_column (str, optinal): Datetime column for time grouping.
            Default: date.

    Raises:
        EnforceError: If data is not a DataFrame.
        EnforceError: If columns not in data columns.
        EnforceError: If illegal metric given.
        EnforceError: If time interval in columns and datetime_column not in
            columns.

    Returns:
        DataFrame: Grouped data.
    '''
    # luts
    met_lut = {
        'max': lambda x: x.max(),
        'mean': lambda x: x.mean(),
        'min': lambda x: x.min(),
        'std': lambda x: x.std(),
        'sum': lambda x: x.sum(),
        'var': lambda x: x.var(),
        'count': lambda x: x.count(),
    }

    time_lut = {
        'year':
        lambda x: dt.datetime(x.year, 1, 1),
        'quarter':
        lambda x: dt.datetime(x.year, int(np.ceil(x.month / 3) * 3 - 2), 1),
        'month':
        lambda x: dt.datetime(x.year, x.month, 1),
        'two_week':
        lambda x: dt.datetime(x.year, x.month,
                              min(int(np.ceil(x.day / 14) * 14 - 13), 28)),
        'week':
        lambda x: dt.datetime(x.year, x.month,
                              max(1, min([int(x.month / 7) * 7, 28]))),
        'day':
        lambda x: dt.datetime(x.year, x.month, x.day),
        'hour':
        lambda x: dt.datetime(x.year, x.month, x.day, x.hour),
        'half_hour':
        lambda x: dt.datetime(x.year, x.month, x.day, x.hour,
                              int(x.minute / 30) * 30),
        'quarter_hour':
        lambda x: dt.datetime(x.year, x.month, x.day, x.hour,
                              int(x.minute / 15) * 15),
        'minute':
        lambda x: dt.datetime(x.year, x.month, x.day, x.hour, x.minute),
        'second':
        lambda x: dt.datetime(x.year, x.month, x.day, x.hour, x.minute, x.
                              second),
        'microsecond':
        lambda x: dt.datetime(x.year, x.month, x.day, x.hour, x.minute, x.
                              second, x.microsecond),
    }
    # --------------------------------------------------------------------------

    # enforcements
    Enforce(data, 'instance of', DataFrame)
    columns_ = columns  # type: Any
    if type(columns_) != list:
        columns_ = [columns_]

    cols = list(filter(lambda x: x not in time_lut.keys(), columns_))
    eft.enforce_columns_in_dataframe(cols, data)

    msg = '{a} is not a legal metric. Legal metrics: {b}.'
    Enforce(metric, 'in', sorted(list(met_lut.keys())), message=msg)

    # time column
    if len(columns_) > len(cols):
        eft.enforce_columns_in_dataframe([datetime_column], data)
        msg = 'Datetime column of type {a}, it must be of type {b}.'
        Enforce(data[datetime_column].dtype.type,
                '==',
                np.datetime64,
                message=msg)
    # --------------------------------------------------------------------------

    for col in columns_:
        if col in time_lut.keys():
            op = time_lut[col]
            data[col] = data[datetime_column].apply(op)
    agg = met_lut[metric]
    cols = data.columns.tolist()
    grp = data.groupby(columns_, as_index=False)
    output = agg(grp)

    # get first value for columns that cannot be computed by given metric
    diff = set(cols).difference(output.columns.tolist())
    if len(diff) > 0:
        first = grp.first()
        for col in diff:
            output[col] = first[col]
    return output
Exemple #23
0
 def test_similar(self):
     e = Enforce(1, '==', 1)
     self.assertTrue(e.similar(0.9, epsilon=1))
     self.assertFalse(e.similar(1.0, epsilon=1))
     self.assertFalse(e.similar(1.1, epsilon=1))
Exemple #24
0
 def test_lte(self):
     e = Enforce(1, '==', 1)
     self.assertTrue(e.lte(1, 2))
     self.assertTrue(e.lte(1, 1))
     self.assertFalse(e.lte(2, 1))
Exemple #25
0
def pivot_data(data, columns, values=[], index=None):
    # type: (DataFrame, List[str], List[str], Optional[str]) -> DataFrame
    '''
    Pivots a given dataframe via a list of columns.

    Legal time columns:

        * date
        * year
        * quarter
        * month
        * two_week
        * week
        * day
        * hour
        * half_hour
        * quarter_hour
        * minute
        * second
        * microsecond

    Args:
        data (DataFrame): DataFrame to be pivoted.
        columns (list[str]): Columns whose unique values become separate traces
            within a plot.
        values (list[str], optional): Columns whose values become the values
            within each trace of a plot. Default: [].
        index (str, optional): Column whose values become the y axis values of a
            plot. Default: None.

    Raises:
        EnforceError: If data is not a DataFrame.
        EnforceError: If data is of zero length.
        EnforceError: If columns not in data columns.
        EnforceError: If values not in data columns.
        EnforceError: If index not in data columns or legal time columns.

    Returns:
        DataFrame: Pivoted data.
    '''
    time_cols = [
        'date',
        'year',
        'quarter',
        'month',
        'two_week',
        'week',
        'day',
        'hour',
        'half_hour',
        'quarter_hour',
        'minute',
        'second',
        'microsecond',
    ]

    Enforce(data, 'instance of', DataFrame)
    msg = 'DataFrame must be at least 1 in length. Given length: {a}.'
    Enforce(len(data), '>=', 1, message=msg)
    eft.enforce_columns_in_dataframe(columns, data)
    eft.enforce_columns_in_dataframe(values, data)
    if index is not None:
        msg = '{a} is not in legal column names: {b}.'
        Enforce(index, 'in', data.columns.tolist() + time_cols, message=msg)
    # --------------------------------------------------------------------------

    vals = copy(values)
    if index is not None and index not in values:
        vals.append(index)

    if index in time_cols:
        data[index] = data[index] \
            .apply(lambda x: x + dt.timedelta(microseconds=randint(0, 999999)))

    data = data.pivot(columns=columns, values=vals, index=index)
    data = data[values]
    data.columns = data.columns.droplevel(0)
    return data
Exemple #26
0
 def test_difference(self):
     e = Enforce(1, '==', 1)
     self.assertEqual(e.difference(1, 2), 1)
     self.assertEqual(e.difference(3, 2), 1)
Exemple #27
0
 def test_eq(self):
     e = Enforce(1, '==', 1)
     self.assertTrue(e.eq(1, 1))
     self.assertFalse(e.eq(1, 2))