Exemple #1
0
def normalize_3x3_matrix(M, xyz0=np.array([[1.0, 1.0, 1.0]])):
    """
    Normalize 3x3 matrix M to xyz0 -- > [1,1,1]
    If M.shape == (1,9): M is reshaped to (3,3)
    
    Args:
        :M: 
            | ndarray((3,3) or ndarray((1,9))
        :xyz0: 
            | 2darray, optional 
        
    Returns:
        :returns: 
            | normalized matrix such that M*xyz0 = [1,1,1]
    """
    M = np2d(M)
    if M.shape[-1] == 9:
        M = M.reshape(3, 3)
    if xyz0.shape[0] == 1:
        return np.dot(np.diagflat(1 / (np.dot(M, xyz0.T))), M)
    else:
        return np.concatenate([
            np.dot(np.diagflat(1 / (np.dot(M, xyz0[1].T))), M)
            for i in range(xyz0.shape[0])
        ],
                              axis=0).reshape(xyz0.shape[0], 3, 3)
Exemple #2
0
 def dot(self, S):
     """
     Take dot product with instance of SPD.
     """
     if isinstance(S, SPD):
         self.value = np.dot(self.value, S.value)
     else:
         self.value = np.dot(self.value, M)
     self.shape = self.value.shape
     self.N = self.shape[0]
     return self
Exemple #3
0
def fit_ellipse(xy):
    """
    Fit an ellipse to supplied data points.

    Args:
        :xy: 
            | coordinates of points to fit (Nx2 array)
            
    Returns:
        :v:
            | vector with ellipse parameters [Rmax,Rmin, xc,yc, theta]
    """
    # remove centroid:
    center = xy.mean(axis=0)
    xy = xy - center

    # Fit ellipse:
    x, y = xy[:, 0:1], xy[:, 1:2]
    D = np.hstack((x * x, x * y, y * y, x, y, np.ones_like(x)))
    S, C = np.dot(D.T, D), np.zeros([6, 6])
    C[0, 2], C[2, 0], C[1, 1] = 2, 2, -1
    U, s, V = np.linalg.svd(np.dot(np.linalg.inv(S), C))
    e = U[:, 0]

    # get ellipse axis lengths, center and orientation:
    b, c, d, f, g, a = e[1] / 2, e[2], e[3] / 2, e[4] / 2, e[5], e[0]

    # get ellipse center:
    num = b * b - a * c
    xc = ((c * d - b * f) / num) + center[0]
    yc = ((a * f - b * d) / num) + center[1]

    # get ellipse orientation:
    theta = np.arctan2(np.array(2 * b), np.array((a - c))) / 2

    # axis lengths:
    up = 2 * (a * f * f + c * d * d + g * b * b - 2 * b * d * f - a * c * g)
    down1 = (b * b - a * c) * ((c - a) * np.sqrt(1 + 4 * b * b / ((a - c) *
                                                                  (a - c))) -
                               (c + a))
    down2 = (b * b - a * c) * ((a - c) * np.sqrt(1 + 4 * b * b / ((a - c) *
                                                                  (a - c))) -
                               (c + a))
    a, b = np.sqrt(up / down1), np.sqrt(up / down2)

    # assert that a is the major axis (otherwise swap and correct angle)
    if (b > a):
        b, a = a, b

        # ensure the angle is betwen 0 and 2*pi
        theta = fmod(theta, 2.0 * np.pi)
    return np.hstack((a, b, xc, yc, theta))
Exemple #4
0
def line_intersect(a1, a2, b1, b2):
    """
    Line intersections of series of two line segments a and b. 
        
    Args:
        :a1: 
            | ndarray (.shape  = (N,2)) specifying end-point 1 of line a
        :a2: 
            | ndarray (.shape  = (N,2)) specifying end-point 2 of line a
        :b1: 
            | ndarray (.shape  = (N,2)) specifying end-point 1 of line b
        :b2: 
            | ndarray (.shape  = (N,2)) specifying end-point 2 of line b
    
    Note: 
        N is the number of line segments a and b.
    
    Returns:
        :returns: 
            | ndarray with line-intersections (.shape = (N,2))
    
    References:
        1. https://stackoverflow.com/questions/3252194/numpy-and-line-intersections
    """
    T = np.array([[0.0, -1.0], [1.0, 0.0]])
    da = np.atleast_2d(a2 - a1)
    db = np.atleast_2d(b2 - b1)
    dp = np.atleast_2d(a1 - b1)
    dap = np.dot(da, T)
    denom = np.sum(dap * db, axis=1)
    num = np.sum(dap * dp, axis=1)
    return np.atleast_2d(num / denom).T * db + b1
Exemple #5
0
def check_posdef(A, atol = 1.0e-9, rtol = 1.0e-9):
    """
    Checks positive definiteness of a matrix via Cholesky.
    
    Args:
        :A: 
            | ndarray
        :atol:
            | float, optional
            | The absolute tolerance parameter (see Notes of numpy.allclose())
        :rtol:
            | float, optional
            | The relative tolerance parameter (see Notes of numpy.allclose())
    
    Returns:
        :returns:
            | Bool
            | True: the array is positive-definite within the given tolerance

    """
    try:
        R = np.linalg.cholesky(A)
        if np.allclose(A, np.dot(R,R.T), atol = atol,rtol = rtol):
            return True
        else:
            return False
    except np.linalg.LinAlgError:
        return False
Exemple #6
0
 def dot(self, M):
     """
     Take dot product with instance.
     """
     self.value = np.dot(M, self.value.T).T
     self.shape = self.value.shape
     return self
Exemple #7
0
def polyarea(x,y):
    """
    Calculates area of polygon. 
    
    | First coordinate should also be last.
    
    Args:
        :x: 
            | ndarray of x-coordinates of polygon vertices.
        :y: 
            | ndarray of x-coordinates of polygon vertices.     
    
    Returns:
        :returns:
            | float (area or polygon)
    
    """
    return 0.5*np.abs(np.dot(x,np.roll(y,1).T)-np.dot(y,np.roll(x,1).T))
Exemple #8
0
def normalize_3x3_matrix(M, xyz0 = np.array([[1.0,1.0,1.0]])):
    """
    Normalize 3x3 matrix M to xyz0 -- > [1,1,1]
    If M.shape == (1,9): M is reshaped to (3,3)
    
    Args:
        :M: 
            | ndarray((3,3) or ndarray((1,9))
        :xyz0: 
            | 2darray, optional 
        
    Returns:
        :returns: 
            | normalized matrix such that M*xyz0 = [1,1,1]
    """
    M = np2d(M)
    if M.shape[-1]==9:
        M = M.reshape(3,3)
    return np.dot(np.diagflat(1/(np.dot(M,xyz0.T))),M)
def lmsb_to_xyzb(lms, fieldsize=10, out='XYZ', allow_negative_values=False):
    """
    Convert from LMS cone fundamentals to XYZ color matching functions.
    
    Args:
        :lms: 
            | ndarray with lms cone fundamentals, optional
        :fieldsize: 
            | fieldsize in degrees, optional
            | Defaults to 10°.
        :out: 
            | 'xyz' or str, optional
            | Determines output.
        :allow_negative_values:
            | False, optional
            | XYZ color matching functions should not have negative values.
            |     If False: xyz[xyz<0] = 0.
    Returns:
        :returns:
            | LMS 
            |   - LMS: ndarray with population XYZ color matching functions.    
    
    Note: 
        For intermediate field sizes (2° < fieldsize < 10°) a conversion matrix
        is calculated by linear interpolation between 
        the _INDVCMF_M_2d and _INDVCMF_M_10d matrices.
    """
    wl = lms[None, 0]  #store wavelengths
    M = get_lms_to_xyz_matrix(fieldsize=fieldsize)
    if lms.ndim > 2:
        xyz = np.vstack((wl, math.dot23(M, lms[1:, ...], keepdims=False)))
    else:
        xyz = np.vstack((wl, np.dot(M, lms[1:, ...])))
    if allow_negative_values == False:
        xyz[np.where(xyz < 0)] = 0
    return xyz
def spd_to_aopicE(sid, Ee = None, E = None, Q = None, cieobs = _CIEOBS, sid_units = 'W/m2', out = 'Eeas,Eas'):
    """
    Calculate alpha-opic irradiance (Ee,α) and equivalent luminance (Eα) values
    for the l-cone, m-cone, s-cone, rod and iprgc (α) photoreceptor cells 
    following CIE technical note TN 003:2015.
    
    Args:
        :sid: 
            | numpy.ndarray with retinal spectral irradiance in :sid_units: 
            | (if 'uW/cm2', sid will be converted to SI units 'W/m2')
        :Ee: 
            | None, optional
            | If not None: normalize :sid: to an irradiance of :Ee:
        :E: 
            | None, optional
            | If not None: normalize :sid: to an illuminance of :E:
            | Note that E is calculate using a Km factor corrected to standard air.
        :Q: 
            | None, optional
            | If not None: nNormalize :sid: to a quantal energy of :Q:
        :cieobs:
            | _CIEOBS or str, optional
            | Type of cmf set to use for photometric units.
        :sid_units:
            | 'W/m2', optional
            | Other option 'uW/m2', input units of :sid:
        :out: 
            | 'Eeas, Eas' or str, optional
            | Determines values to return.
            
    Returns:
        :returns: 
            | (Eeas, Eas) with Eeas and Eas resp. numpy.ndarrays with the 
              α-opic irradiance and equivalent illuminance values 
              of all spectra in :sid: in SI-units. 
         
            | (other choice can be set using :out:)
    """
    outlist = out.split(',')
    
    # Convert to Watt/m²:
    if sid_units == 'uW/cm2':
        sid[1:] = sid[1:]/100

    elif sid_units == 'W/m2':
        pass
    else:
        raise Exception("spd_to_aopicE(): {} unsupported units for SID.".format(sid_units))
    
    
    # Normalize sid to Ee:
    if Ee is not None:
        sid = spd_normalize(sid, norm_type = 'ru', norm_f = Ee)  
    elif E is not None:
        sid = spd_normalize(sid, norm_type = 'pusa', norm_f = E) 
    elif Q is not None:
        sid = spd_normalize(sid, norm_type = 'qu', norm_f = Q) 
    
    
    # Get sid irradiance (W/m²):
    if 'Ee' in outlist:
        Ee = spd_to_power(sid, cieobs = cieobs, ptype = 'ru')
    
    # Get sid illuminance (lx):
    if 'E' in outlist:
        E = spd_to_power(sid, cieobs = cieobs, ptype = 'pusa') #photometric units (Km corrected to standard air)
    
    # Get sid quantal energy (photons/m²/s):
    if 'Q' in outlist:
        Q = spd_to_power(sid, cieobs = cieobs, ptype = 'qu')


    # get SI actinic action spectra, sa:
    sa = spd(_ACTIONSPECTRA, wl = sid[0], interpolation = 'cmf', norm_type = 'max')
    
    # get wavelength spacing:
    dl = getwld(sid[0])
    
    # Calculate all alpha-opics Ee's:
    Eeas = (np.dot((sa[1:]*dl),sid[1:].T)).T

    # Calculate equivalent alpha-opic E's:
    Vl, Km = vlbar(cieobs = cieobs, wl_new = sid[0], out = 2)
    Eas = Km*Km_correction_factor*Eeas*(Vl[1].sum()/sa[1:].sum(axis = 1))

    #Prepare output:
    if out == 'Eeas,Eas':
        return Eeas,Eas
    elif out == 'Eeas':
        return Eeas
    elif out == 'Eas':
        return Eas
    else:
        eval(out)
def Ydlep_to_xyz(Ydlep,
                 cieobs=_CIEOBS,
                 xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                 flip_axes=False,
                 **kwargs):
    """
    Convert Y, dominant (complementary) wavelength and excitation purity to XYZ
    tristimulus values.

    Args:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
              and excitation purity
        :xyzw: 
            | None or narray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
    Returns:
        :xyz: 
            | ndarray with tristimulus values
    """

    Ydlep3 = np3d(Ydlep).copy().astype(np.float)

    # flip axis so that longest dim is on first axis  (save time in looping):
    if (Ydlep3.shape[0] < Ydlep3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        Ydlep3 = Ydlep3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyzw to Yxyw:
    Yxyw = xyz_to_Yxy(xyzw)
    Yxywo = Yxyw.copy()

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']
    wlsl = SL[0, None].T
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]

    # center on xyzw:
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, dom, pur = asplit(Ydlep3)
    Yw, xw, yw = asplit(Yxyw)
    Ywo, xwo, ywo = asplit(Yxywo)
    Ysl, xsl, ysl = asplit(Yxysl)

    # loop over longest dim:
    x = np.empty(Y.shape)
    y = np.empty(Y.shape)
    for i in range(Ydlep3.shape[1]):

        # find closest wl's to dom:
        #wlslb,wlib = meshblock(wlsl,np.abs(dom[i,:])) #abs because dom<0--> complemtary wl
        wlib, wlslb = np.meshgrid(np.abs(dom[:, i]), wlsl)

        dwl = np.abs(wlslb - wlib)
        q1 = dwl.argmin(axis=0)  # index of closest wl
        dwl[q1] = 10000.0
        q2 = dwl.argmin(axis=0)  # index of second closest wl

        # calculate x,y of dom:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (
            np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0]
                                                )  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (
            np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0]
                                                )  # calculate y of dom. wl

        # calculate x,y of test:
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to dom
        d = pur[:, i] * d_wl
        hdom = math.positive_arctan(x_dom_wl, y_dom_wl, htype='deg')
        x[:, i] = d * np.cos(hdom * np.pi / 180.0)
        y[:, i] = d * np.sin(hdom * np.pi / 180.0)

        # complementary:
        pc = np.where(dom[:, i] < 0.0)
        hdom[pc] = hdom[pc] - np.sign(dom[:, i][pc] -
                                      180.0) * 180.0  # get positive hue angle

        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x_dom_wl, y_dom_wl)).T
        xyw = np.vstack((xw, yw)).T
        xypl1 = np.vstack((xsl[0, None], ysl[0, None])).T
        xypl2 = np.vstack((xsl[-1, None], ysl[-1, None])).T
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T[:, 0]
        x[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.cos(
            hdom[pc] * np.pi / 180)
        y[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.sin(
            hdom[pc] * np.pi / 180)
    Yxy = np.dstack((Ydlep3[:, :, 0], x + xwo, y + ywo))
    if axes12flipped == True:
        Yxy = Yxy.transpose((1, 0, 2))
    else:
        Yxy = Yxy.transpose((0, 1, 2))
    return Yxy_to_xyz(Yxy).reshape(Ydlep.shape)
def xyz_to_Ydlep(xyz,
                 cieobs=_CIEOBS,
                 xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                 flip_axes=False,
                 **kwargs):
    """
    Convert XYZ tristimulus values to Y, dominant (complementary) wavelength
    and excitation purity.

    Args:
        :xyz:
            | ndarray with tristimulus values
        :xyzw:
            | None or ndarray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
    Returns:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
              and excitation purity
    """

    xyz3 = np3d(xyz).copy().astype(np.float)

    # flip axis so that shortest dim is on axis0 (save time in looping):
    if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        xyz3 = xyz3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyz to Yxy:
    Yxy = xyz_to_Yxy(xyz3)
    Yxyw = xyz_to_Yxy(xyzw)

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']

    wlsl = SL[0]
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]

    # center on xyzw:
    Yxy = Yxy - Yxyw
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, x, y = asplit(Yxy)
    Yw, xw, yw = asplit(Yxyw)
    Ysl, xsl, ysl = asplit(Yxysl)

    # calculate hue:
    h = math.positive_arctan(x, y, htype='deg')

    hsl = math.positive_arctan(xsl, ysl, htype='deg')

    hsl_max = hsl[0]  # max hue angle at min wavelength
    hsl_min = hsl[-1]  # min hue angle at max wavelength

    dominantwavelength = np.empty(Y.shape)
    purity = np.empty(Y.shape)
    for i in range(xyz3.shape[1]):

        # find index of complementary wavelengths/hues:
        pc = np.where(
            (h[:, i] >= hsl_max) & (h[:, i] <= hsl_min + 360.0)
        )  # hue's requiring complementary wavelength (purple line)
        h[:, i][pc] = h[:, i][pc] - np.sign(
            h[:, i][pc] - 180.0
        ) * 180.0  # add/subtract 180° to get positive complementary wavelength

        # find 2 closest hues in sl:
        #hslb,hib = meshblock(hsl,h[:,i:i+1])
        hib, hslb = np.meshgrid(h[:, i:i + 1], hsl)
        dh = np.abs(hslb - hib)
        q1 = dh.argmin(axis=0)  # index of closest hue
        dh[q1] = 1000.0
        q2 = dh.argmin(axis=0)  # index of second closest hue

        dominantwavelength[:, i] = wlsl[q1] + np.divide(
            np.multiply((wlsl[q2] - wlsl[q1]),
                        (h[:, i] - hsl[q1, 0])), (hsl[q2, 0] - hsl[q1, 0])
        )  # calculate wl corresponding to h: y = y1 + (y2-y1)*(x-x1)/(x2-x1)
        dominantwavelength[:, i][pc] = -dominantwavelength[:, i][
            pc]  #complementary wavelengths are specified by '-' sign

        # calculate excitation purity:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate y of dom. wl
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to sl
        d = (x[:, i]**2.0 +
             y[:, i]**2.0)**0.5  # distance from white point to test point
        purity[:, i] = d / d_wl

        # correct for those test points that have a complementary wavelength
        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x[:, i], y[:, i])).T
        xyw = np.hstack((xw, yw))
        xypl1 = np.hstack((xsl[0, None], ysl[0, None]))
        xypl2 = np.hstack((xsl[-1, None], ysl[-1, None]))
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T  #[0]
        purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0]
    Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity))

    if axes12flipped == True:
        Ydlep = Ydlep.transpose((1, 0, 2))
    else:
        Ydlep = Ydlep.transpose((0, 1, 2))
    return Ydlep.reshape(xyz.shape)
Exemple #13
0
def symmM_to_posdefM(A = None, atol = 1.0e-9, rtol = 1.0e-9, method = 'make', forcesymm = True):
    """
    Convert a symmetric matrix to a positive definite one. 
    
    Args:
        :A: 
            | ndarray
        :atol:
            | float, optional
            | The absolute tolerance parameter (see Notes of numpy.allclose())
        :rtol:
            | float, optional
            | The relative tolerance parameter (see Notes of numpy.allclose())
        :method: 
            | 'make' or 'nearest', optional (see notes for more info)
        :forcesymm: 
            | True or False, optional
            | If A is not symmetric, force symmetry using: 
            |    A = numpy.triu(A) + numpy.triu(A).T - numpy.diag(numpy.diag(A))
    
    Returns:
        :returns:
            | ndarray with positive-definite matrix.
        
    Notes on supported methods:
        1. `'make': A Python/Numpy port of Muhammad Asim Mubeen's matlab function 
        Spd_Mat.m 
        <https://nl.mathworks.com/matlabcentral/fileexchange/45873-positive-definite-matrix>`_
        2. `'nearest': A Python/Numpy port of John D'Errico's `nearestSPD` 
        MATLAB code. 
        <https://stackoverflow.com/questions/43238173/python-convert-matrix-to-positive-semi-definite>`_
    """
    if A is not None:
        A = np2d(A)
        
        
        # Make sure matrix A is symmetric up to a certain tolerance:
        sn = check_symmetric(A, atol = atol, rtol = rtol) 
        if ((A.shape[0] != A.shape[1]) | (sn != True)):
            if (forcesymm == True)  &  (A.shape[0] == A.shape[1]):
                A = np.triu(A) + np.triu(A).T - np.diag(np.diag(A))
            else:
                raise Exception('symmM_to_posdefM(): matrix A not symmetric.')
        
        
        if check_posdef(A, atol = atol, rtol = rtol) == True:
            return A
        else:

            if method == 'make':

                # A Python/Numpy port of Muhammad Asim Mubeen's matlab function Spd_Mat.m
                #
                # See: https://nl.mathworks.com/matlabcentral/fileexchange/45873-positive-definite-matrix
                Val, Vec = np.linalg.eig(A) 
                Val = np.real(Val)
                Vec = np.real(Vec)
                Val[np.where(Val==0)] = _EPS #making zero eigenvalues non-zero
                p = np.where(Val<0)
                Val[p] = -Val[p] #making negative eigenvalues positive
                return   np.dot(Vec,np.dot(np.diag(Val) , Vec.T))
 
            
            elif method == 'nearest':
                
                 # A Python/Numpy port of John D'Errico's `nearestSPD` MATLAB code [1], which
                 # credits [2].
                 #
                 # [1] https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd
                 #
                 # [2] N.J. Higham, "Computing a nearest symmetric positive semidefinite
                 # matrix" (1988): https://doi.org/10.1016/0024-3795(88)90223-6
                 #
                 # See: https://stackoverflow.com/questions/43238173/python-convert-matrix-to-positive-semi-definite
                
                B = (A + A.T) / 2.0
                _, s, V = np.linalg.svd(B)

                H = np.dot(V.T, np.dot(np.diag(s), V))

                A2 = (B + H) / 2.0

                A3 = (A2 + A2.T) / 2.0

                if check_posdef(A3, atol = atol, rtol = rtol) == True:
                    return A3

                spacing = np.spacing(np.linalg.norm(A))
                I = np.eye(A.shape[0])
                k = 1
                while not check_posdef(A3, atol = atol, rtol = rtol):
                    mineig = np.min(np.real(np.linalg.eigvals(A3)))
                    A3 += I * (-mineig * k**2.0+ spacing)
                    k += 1

                return A3
Exemple #14
0
def plotellipse(v, cspace_in = 'Yxy', cspace_out = None, nsamples = 100, \
                show = True, axh = None, \
                line_color = 'darkgray', line_style = ':', line_width = 1, line_marker = '', line_markersize = 4,\
                plot_center = False, center_marker = 'o', center_color = 'darkgray', center_markersize = 4,\
                show_grid = True, label_fontname = 'Times New Roman', label_fontsize = 12,\
                out = None):
    """
    Plot ellipse(s) given in v-format [Rmax,Rmin,xc,yc,theta].
    
    Args:
        :v: 
            | (Nx5) ndarray
            | ellipse parameters [Rmax,Rmin,xc,yc,theta]
        :cspace_in:
            | 'Yxy', optional
            | Color space of v.
            | If None: no color space assumed. Axis labels assumed ('x','y').
        :cspace_out:
            | None, optional
            | Color space to plot ellipse(s) in.
            | If None: plot in cspace_in.
        :nsamples:
            | 100 or int, optional
            | Number of points (samples) in ellipse boundary
        :show:
            | True or boolean, optional
            | Plot ellipse(s) (True) or not (False)
        :axh: 
            | None, optional
            | Ax-handle to plot ellipse(s) in.
            | If None: create new figure with axes.
        :line_color:
            | 'darkgray', optional
            | Color to plot ellipse(s) in.
        :line_style:
            | ':', optional
            | Linestyle of ellipse(s).
        :line_width':
            | 1, optional
            | Width of ellipse boundary line.
        :line_marker:
            | 'none', optional
            | Marker for ellipse boundary.
        :line_markersize:
            | 4, optional
            | Size of markers in ellipse boundary.
        :plot_center:
            | False, optional
            | Plot center of ellipse: yes (True) or no (False)
        :center_color:
            | 'darkgray', optional
            | Color to plot ellipse center in.
        :center_marker:
            | 'o', optional
            | Marker for ellipse center.
        :center_markersize:
            | 4, optional
            | Size of marker of ellipse center.
        :show_grid:
            | True, optional
            | Show grid (True) or not (False)
        :label_fontname: 
            | 'Times New Roman', optional
            | Sets font type of axis labels.
        :label_fontsize:
            | 12, optional
            | Sets font size of axis labels.
        :out:
            | None, optional
            | Output of function
            | If None: returns None. Can be used to output axh of newly created
            |      figure axes or to return Yxys an ndarray with coordinates of 
            |       ellipse boundaries in cspace_out (shape = (nsamples,3,N)) 
            
        
    Returns:
        :returns: None, or whatever set by :out:.
    """
    Yxys = np.zeros((nsamples,3,v.shape[0]))
    ellipse_vs = np.zeros((v.shape[0],5))
    for i,vi in enumerate(v):
        
        # Set sample density of ellipse boundary:
        t = np.linspace(0, 2*np.pi, nsamples)
        
        a = vi[0] # major axis
        b = vi[1] # minor axis
        xyc = vi[2:4,None] # center
        theta = vi[-1] # rotation angle
        
        # define rotation matrix:
        R = np.hstack(( np.vstack((np.cos(theta), np.sin(theta))), np.vstack((-np.sin(theta), np.cos(theta)))))
 
        # Calculate ellipses:
        Yxyc = np.vstack((1, xyc)).T
        Yxy = np.vstack((np.ones((1,nsamples)), xyc + np.dot(R, np.vstack((a*np.cos(t), b*np.sin(t))) ))).T
        Yxys[:,:,i] = Yxy
        
        # Convert to requested color space:
        if (cspace_out is not None) & (cspace_in is not None):
            Yxy = colortf(Yxy, cspace_in + '>' + cspace_out)
            Yxyc = colortf(Yxyc, cspace_in + '>' + cspace_out)
            Yxys[:,:,i] = Yxy
            
            # get ellipse parameters in requested color space:
            ellipse_vs[i,:] = math.fit_ellipse(Yxy[:,1:])
            #de = np.sqrt((Yxy[:,1]-Yxyc[:,1])**2 + (Yxy[:,2]-Yxyc[:,2])**2)
            #ellipse_vs[i,:] = np.hstack((de.max(),de.min(),Yxyc[:,1],Yxyc[:,2],np.nan)) # nan because orientation is xy, but request is some other color space. Change later to actual angle when fitellipse() has been implemented

        
        # plot ellipses:
        if show == True:
            if (axh is None) & (i == 0):
                fig = plt.figure()
                axh = fig.add_subplot(111)
            
            if (cspace_in is None):
                xlabel = 'x'
                ylabel = 'y'
            else:
                xlabel = _CSPACE_AXES[cspace_in][1]
                ylabel = _CSPACE_AXES[cspace_in][2]
            
            if (cspace_out is not None):
                xlabel = _CSPACE_AXES[cspace_out][1]
                ylabel = _CSPACE_AXES[cspace_out][2]
            
            if plot_center == True:
                plt.plot(Yxyc[:,1],Yxyc[:,2],color = center_color, linestyle = 'none', marker = center_marker, markersize = center_markersize)

            plt.plot(Yxy[:,1],Yxy[:,2],color = line_color, linestyle = line_style, linewidth = line_width, marker = line_marker, markersize = line_markersize)
            plt.xlabel(xlabel, fontname = label_fontname, fontsize = label_fontsize)
            plt.ylabel(ylabel, fontname = label_fontname, fontsize = label_fontsize)
            if show_grid == True:
                plt.grid()
            #plt.show()     
    Yxys = np.transpose(Yxys,axes=(0,2,1))       
    if out is not None:
        return eval(out)
    else:
        return None
def get_poly_model(jabt, jabr, modeltype = _VF_MODEL_TYPE):
    """
    Setup base color shift model (delta_a, delta_b), 
    determine model parameters and accuracy.
    
    | Calculates a base color shift (delta) from the ref. chromaticity ar, br.
    
    Args:
        :jabt: 
            | ndarray with jab color coordinates under the test SPD.
        :jabr: 
            | ndarray with jab color coordinates under the reference SPD.
        :modeltype:
            | _VF_MODEL_TYPE or 'M6' or 'M5', optional
            | Specifies degree 5 or degree 6 polynomial model in ab-coordinates.
              (see notes below)
            
    Returns:
        :returns: 
            | (poly_model, 
            |       pmodel, 
            |       dab_model, 
            |        dab_res, 
            |        dCHoverC_res, 
            |        dab_std, 
            |        dCHoverC_std)
            |
            | :poly_model: function handle to model
            | :pmodel: ndarray with model parameters
            | :dab_model: ndarray with ab model predictions from ar, br.
            | :dab_res: ndarray with residuals between 'da,db' of samples and 
            |            'da,db' predicted by the model.
            | :dCHoverC_res: ndarray with residuals between 'dCoverC,dH' 
            |                 of samples and 'dCoverC,dH' predicted by the model.
            |     Note: dCoverC = (Ct - Cr)/Cr and dH = ht - hr 
            |         (predicted from model, see notes below)
            | :dab_std: ndarray with std of :dab_res:
            | :dCHoverC_std: ndarray with std of :dCHoverC_res: 

    Notes: 
        1. Model types:
            | poly5_model = lambda a,b,p:         p[0]*a + p[1]*b + p[2]*(a**2) + p[3]*a*b + p[4]*(b**2)
            | poly6_model = lambda a,b,p:  p[0] + p[1]*a + p[2]*b + p[3]*(a**2) + p[4]*a*b + p[5]*(b**2)
        
        2. Calculation of dCoverC and dH:
            | dCoverC = (np.cos(hr)*da + np.sin(hr)*db)/Cr
            | dHoverC = (np.cos(hr)*db - np.sin(hr)*da)/Cr    
    """
    at = jabt[...,1]
    bt = jabt[...,2]
    ar = jabr[...,1]
    br = jabr[...,2]
    
    # A. Calculate da, db:
    da = at - ar
    db = bt - br
    
    # B.1 Calculate model matrix:
    # 5-parameter model:
    M5 = np.array([[np.sum(ar*ar), np.sum(ar*br), np.sum(ar*ar**2),np.sum(ar*ar*br),np.sum(ar*br**2)],
            [np.sum(br*ar), np.sum(br*br), np.sum(br*ar**2),np.sum(br*ar*br),np.sum(br*br**2)],
            [np.sum((ar**2)*ar), np.sum((ar**2)*br), np.sum((ar**2)*ar**2),np.sum((ar**2)*ar*br),np.sum((ar**2)*br**2)],
            [np.sum(ar*br*ar), np.sum(ar*br*br), np.sum(ar*br*ar**2),np.sum(ar*br*ar*br),np.sum(ar*br*br**2)],
            [np.sum((br**2)*ar), np.sum((br**2)*br), np.sum((br**2)*ar**2),np.sum((br**2)*ar*br),np.sum((br**2)*br**2)]])
    #6-parameters model
    M6 = np.array([[ar.size,np.sum(1.0*ar), np.sum(1.0*br), np.sum(1.0*ar**2),np.sum(1.0*ar*br),np.sum(1.0*br**2)],
            [np.sum(ar*1.0),np.sum(ar*ar), np.sum(ar*br), np.sum(ar*ar**2),np.sum(ar*ar*br),np.sum(ar*br**2)],
            [np.sum(br*1.0),np.sum(br*ar), np.sum(br*br), np.sum(br*ar**2),np.sum(br*ar*br),np.sum(br*br**2)],
            [np.sum((ar**2)*1.0),np.sum((ar**2)*ar), np.sum((ar**2)*br), np.sum((ar**2)*ar**2),np.sum((ar**2)*ar*br),np.sum((ar**2)*br**2)],
            [np.sum(ar*br*1.0),np.sum(ar*br*ar), np.sum(ar*br*br), np.sum(ar*br*ar**2),np.sum(ar*br*ar*br),np.sum(ar*br*br**2)],
            [np.sum((br**2)*1.0),np.sum((br**2)*ar), np.sum((br**2)*br), np.sum((br**2)*ar**2),np.sum((br**2)*ar*br),np.sum((br**2)*br**2)]])
    
    # B.2 Define model function:
    poly5_model = lambda a,b,p: p[0]*a + p[1]*b + p[2]*(a**2) + p[3]*a*b + p[4]*(b**2)
    poly6_model = lambda a,b,p: p[0] + p[1]*a + p[2]*b + p[3]*(a**2) + p[4]*a*b + p[5]*(b**2)
    
    if modeltype == 'M5':
        M = M5
        poly_model = poly5_model
    else:
        M = M6
        poly_model = poly6_model

    M = np.linalg.inv(M)


    # C.1 Data a,b analysis output:
    if modeltype == 'M5':
        da_model_parameters = np.dot(M, np.array([np.sum(da*ar), np.sum(da*br), np.sum(da*ar**2),np.sum(da*ar*br),np.sum(da*br**2)]))
        db_model_parameters = np.dot(M, np.array([np.sum(db*ar), np.sum(db*br), np.sum(db*ar**2),np.sum(db*ar*br),np.sum(db*br**2)]))
    else:
        da_model_parameters = np.dot(M, np.array([np.sum(da*1.0),np.sum(da*ar), np.sum(da*br), np.sum(da*ar**2),np.sum(da*ar*br),np.sum(da*br**2)]))
        db_model_parameters = np.dot(M, np.array([np.sum(db*1.0),np.sum(db*ar), np.sum(db*br), np.sum(db*ar**2),np.sum(db*ar*br),np.sum(db*br**2)]))
    pmodel = np.vstack((da_model_parameters,db_model_parameters))

    # D.1 Calculate model da, db:
    da_model = poly_model(ar,br,pmodel[0])
    db_model = poly_model(ar,br,pmodel[1])
    dab_model = np.hstack((da_model,db_model))

    # D.2 Calculate residuals for da & db:
    da_res = da - da_model
    db_res = db - db_model
    dab_res = np.hstack((da_res,db_res))
    dab_std = np.vstack((np.std(da_res,axis=0),np.std(db_res,axis=0)))

    # E Calculate href, Cref:
    href = np.arctan2(br,ar)
    Cref = (ar**2 + br**2)**0.5
    
    # F Calculate dC/C, dH/C for data and model and calculate residuals:
    dCoverC = (np.cos(href)*da + np.sin(href)*db)/Cref
    dHoverC = (np.cos(href)*db - np.sin(href)*da)/Cref
    dCoverC_model = (np.cos(href)*da_model + np.sin(href)*db_model)/Cref
    dHoverC_model = (np.cos(href)*db_model - np.sin(href)*da_model)/Cref
    dCoverC_res = dCoverC - dCoverC_model
    dHoverC_res = dHoverC - dHoverC_model
    dCHoverC_std = np.vstack((np.std(dCoverC_res,axis = 0),np.std(dHoverC_res,axis = 0)))
    
    dCHoverC_res = np.hstack((href,dCoverC_res,dHoverC_res))

    return poly_model, pmodel, dab_model, dab_res, dCHoverC_res, dab_std, dCHoverC_std
Exemple #16
0
def apply(data, catmode = '1>0>2', cattype = 'vonkries', xyzw1 = None, xyzw2 = None, xyzw0 = None,\
          D = None, mcat = ['cat02'], normxyz0 = None, outtype = 'xyz', La = None, F = None, Dtype = None):
    """
    Calculate corresponding colors by applying a von Kries chromatic adaptation
    transform (CAT), i.e. independent rescaling of 'sensor sensitivity' to data
    to adapt from current adaptation conditions (1) to the new conditions (2).
    
    Args:
        :data: 
            | ndarray of tristimulus values (can be NxMx3)
        :catmode: 
            | '1>0>2, optional
            |    -'1>0>2': Two-step CAT 
            |      from illuminant 1 to baseline illuminant 0 to illuminant 2.
            |    -'1>0': One-step CAT 
            |      from illuminant 1 to baseline illuminant 0.
            |    -'0>2': One-step CAT 
            |      from baseline illuminant 0 to illuminant 2. 
        :cattype: 
            | 'vonkries' (others: 'rlab', see Farchild 1990), optional
        :xyzw1:
            | None, depending on :catmode: optional (can be Mx3)
        :xyzw2:
            | None, depending on :catmode: optional (can be Mx3)
        :xyzw0:
            | None, depending on :catmode: optional (can be Mx3)
        :D: 
            | None, optional
            | Degrees of adaptation. Defaults to [1.0, 1.0]. 
        :La: 
            | None, optional
            | Adapting luminances. 
            | If None: xyz values are absolute or relative.
            | If not None: xyz are relative. 
        :F: 
            | None, optional
            | Surround parameter(s) for CAT02/CAT16 calculations 
              (:Dtype: == 'cat02' or 'cat16')
            | Defaults to [1.0, 1.0]. 
        :Dtype:
            | None, optional
            | Type of degree of adaptation function from literature
            | See luxpy.cat.get_degree_of_adaptation()
        :mcat:
            | ['cat02'], optional
            | List[str] or List[ndarray] of sensor space matrices for each 
              condition pair. If len(:mcat:) == 1, the same matrix is used.
        :normxyz0: 
            | None, optional
            | Set of xyz tristimulus values to normalize the sensor space matrix to.
        :outtype:
            | 'xyz' or 'lms', optional
            |   - 'xyz': return corresponding tristimulus values 
            |   - 'lms': return corresponding sensor space excitation values 
            |            (e.g. for further calculations) 
      
    Returns:
          :returns: 
              | ndarray with corresponding colors
    """

    if (xyzw1 is None) & (xyzw2 is None):
        return data  # do nothing

    else:

        # Make data 2d:
        data = np2d(data)
        data_original_shape = data.shape
        if data.ndim < 3:
            target_shape = np.hstack((1, data.shape))
            data = data * np.ones(target_shape)
        else:
            target_shape = data.shape

        target_shape = data.shape

        # initialize xyzw0:
        if (xyzw0 is None):  # set to iLL.E
            xyzw0 = np2d([100.0, 100.0, 100.0])
        xyzw0 = np.ones(target_shape) * xyzw0
        La0 = xyzw0[..., 1, None]

        # Determine cat-type (1-step or 2-step) + make input same shape as data for block calculations:
        expansion_axis = np.abs(1 * (len(data_original_shape) == 2) - 1)
        if ((xyzw1 is not None) & (xyzw2 is not None)):
            xyzw1 = xyzw1 * np.ones(target_shape)
            xyzw2 = xyzw2 * np.ones(target_shape)
            default_La12 = [xyzw1[..., 1, None], xyzw2[..., 1, None]]

        elif (xyzw2 is None) & (xyzw1
                                is not None):  # apply one-step CAT: 1-->0
            catmode = '1>0'  #override catmode input
            xyzw1 = xyzw1 * np.ones(target_shape)
            default_La12 = [xyzw1[..., 1, None], La0]

        elif (xyzw1 is None) & (xyzw2 is not None):
            raise Exception(
                "von_kries(): cat transformation '0>2' not supported, use '1>0' !"
            )

        # Get or set La (La == None: xyz are absolute or relative, La != None: xyz are relative):
        target_shape_1 = tuple(np.hstack((target_shape[:-1], 1)))
        La1, La2 = parse_x1x2_parameters(La,
                                         target_shape=target_shape_1,
                                         catmode=catmode,
                                         expand_2d_to_3d=expansion_axis,
                                         default=default_La12)

        # Set degrees of adaptation, D10, D20:  (note D20 is degree of adaptation for 2-->0!!)
        D10, D20 = parse_x1x2_parameters(D,
                                         target_shape=target_shape_1,
                                         catmode=catmode,
                                         expand_2d_to_3d=expansion_axis)

        # Set F surround in case of Dtype == 'cat02':
        F1, F2 = parse_x1x2_parameters(F,
                                       target_shape=target_shape_1,
                                       catmode=catmode,
                                       expand_2d_to_3d=expansion_axis)

        # Make xyz relative to go to relative xyz0:
        if La is None:
            data = 100 * data / La1
            xyzw1 = 100 * xyzw1 / La1
            xyzw0 = 100 * xyzw0 / La0
            if (catmode == '1>0>2') | (catmode == '1>2'):
                xyzw2 = 100 * xyzw2 / La2

        # transform data (xyz) to sensor space (lms) and perform cat:
        xyzc = np.ones(data.shape) * np.nan
        mcat = np.array(mcat)
        if (mcat.shape[0] != data.shape[1]) & (mcat.shape[0] == 1):
            mcat = np.repeat(mcat, data.shape[1], axis=0)
        elif (mcat.shape[0] != data.shape[1]) & (mcat.shape[0] > 1):
            raise Exception(
                'von_kries(): mcat.shape[0] > 1 and does not match data.shape[0]!'
            )

        for i in range(xyzc.shape[1]):
            # get cat sensor matrix:
            if mcat[i].dtype == np.float64:
                mcati = mcat[i]
            else:
                mcati = _MCATS[mcat[i]]

            # normalize sensor matrix:
            if normxyz0 is not None:
                mcati = math.normalize_3x3_matrix(mcati, xyz0=normxyz0)

            # convert from xyz to lms:
            lms = np.dot(mcati, data[:, i].T).T
            lmsw0 = np.dot(mcati, xyzw0[:, i].T).T
            if (catmode == '1>0>2') | (catmode == '1>0'):
                lmsw1 = np.dot(mcati, xyzw1[:, i].T).T
                Dpar1 = dict(D=D10[:, i],
                             F=F1[:, i],
                             La=La1[:, i],
                             La0=La0[:, i],
                             order='1>0')
                D10[:, i] = get_degree_of_adaptation(
                    Dtype=Dtype,
                    **Dpar1)  #get degree of adaptation depending on Dtype
                lmsw2 = None  # in case of '1>0'

            if (catmode == '1>0>2'):
                lmsw2 = np.dot(mcati, xyzw2[:, i].T).T
                Dpar2 = dict(D=D20[:, i],
                             F=F2[:, i],
                             La=La2[:, i],
                             La0=La0[:, i],
                             order='0>2')

                D20[:, i] = get_degree_of_adaptation(
                    Dtype=Dtype,
                    **Dpar2)  #get degree of adaptation depending on Dtype

            if (catmode == '1>2'):
                lmsw1 = np.dot(mcati, xyzw1[:, i].T).T
                lmsw2 = np.dot(mcati, xyzw2[:, i].T).T
                Dpar12 = dict(D=D10[:, i],
                              F=F1[:, i],
                              La=La1[:, i],
                              La2=La2[:, i],
                              order='1>2')
                D10[:, i] = get_degree_of_adaptation(
                    Dtype=Dtype,
                    **Dpar12)  #get degree of adaptation depending on Dtype

            # Determine transfer function Dt:
            Dt = get_transfer_function(cattype=cattype,
                                       catmode=catmode,
                                       lmsw1=lmsw1,
                                       lmsw2=lmsw2,
                                       lmsw0=lmsw0,
                                       D10=D10[:, i],
                                       D20=D20[:, i],
                                       La1=La1[:, i],
                                       La2=La2[:, i])

            # Perform cat:
            lms = np.dot(np.diagflat(Dt[0]), lms.T).T

            # Make xyz, lms 'absolute' again:
            if (catmode == '1>0>2'):
                lms = (La2[:, i] / La1[:, i]) * lms
            elif (catmode == '1>0'):
                lms = (La0[:, i] / La1[:, i]) * lms
            elif (catmode == '1>2'):
                lms = (La2[:, i] / La1[:, i]) * lms

            # transform back from sensor space to xyz (or not):
            if outtype == 'xyz':
                xyzci = np.dot(np.linalg.inv(mcati), lms.T).T
                xyzci[np.where(xyzci < 0)] = _EPS
                xyzc[:, i] = xyzci
            else:
                xyzc[:, i] = lms

        # return data to original shape:
        if len(data_original_shape) == 2:
            xyzc = xyzc[0]

        return xyzc
Exemple #17
0
def cam15u(data,
           fov=10.0,
           inputtype='xyz',
           direction='forward',
           outin='Q,aW,bW',
           parameters=None):
    """
    Convert between CIE 2006 10°  XYZ tristimulus values (or spectral data) 
    and CAM15u color appearance correlates.
    
    Args:
        :data: 
            | ndarray of CIE 2006 10°  XYZ tristimulus values or spectral data
              or color appearance attributes
        :fov: 
            | 10.0, optional
            | Field-of-view of stimulus (for size effect on brightness)
        :inputtpe:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam15u
            |   -'inverse': cam15u -> xyz 
        :outin:
            | 'Q,aW,bW' or str, optional
            | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral)
            |  other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation)
            | Str specifying the type of 
            |     input (:direction: == 'inverse') and 
            |     output (:direction: == 'forward')
        :parameters:
            | None or dict, optional
            | Set of model parameters.
            |   - None: defaults to luxpy.cam._CAM15U_PARAMETERS 
            |    (see references below)
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')

    References: 
        1. `M. Withouck, K. A. G. Smet, W. R. Ryckaert, and P. Hanselaer, 
        “Experimental driven modelling of the color appearance of 
        unrelated self-luminous stimuli: CAM15u,” 
        Opt. Express, vol. 23, no. 9, pp. 12045–12064, 2015.
        <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-9-12045&origin=search>`_
        2. `M. Withouck, K. A. G. Smet, and P. Hanselaer, (2015), 
        “Brightness prediction of different sized unrelated self-luminous stimuli,” 
        Opt. Express, vol. 23, no. 10, pp. 13455–13466. 
        <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-10-13455&origin=search>`_  
     """

    if parameters is None:
        parameters = _CAM15U_PARAMETERS

    outin = outin.split(',')

    #unpack model parameters:
    Mxyz2rgb, cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cp, k, unique_hue_data = [
        parameters[x] for x in sorted(parameters.keys())
    ]

    # precomputations:
    invMxyz2rgb = np.linalg.inv(Mxyz2rgb)
    MAab = np.array([cAlms, calms, cblms])
    invMAab = np.linalg.inv(MAab)

    #initialize data and camout:
    data = np2d(data)
    if len(data.shape) == 2:
        data = np.expand_dims(data, axis=0)  # avoid looping if not necessary

    if (data.shape[0] > data.shape[1]):  # loop over shortest dim.
        flipaxis0and1 = True
        data = np.transpose(data, axes=(1, 0, 2))
    else:
        flipaxis0and1 = False

    dshape = list(data.shape)
    dshape[-1] = len(outin)  # requested number of correlates
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[
            -2] - 1  # wavelength row doesn't count & only with forward can the input data be spectral
    camout = np.nan * np.ones(dshape)

    for i in range(data.shape[0]):

        if (inputtype != 'xyz') & (direction == 'forward'):
            xyz = spd_to_xyz(data[i], cieobs='2006_10', relative=False)
            lms = np.dot(_CMF['2006_10']['M'], xyz.T).T  # convert to l,m,s
            rgb = (lms /
                   _CMF['2006_10']['K']) * k  # convert to rho, gamma, beta
        elif (inputtype == 'xyz') & (direction == 'forward'):
            rgb = np.dot(Mxyz2rgb, data[i].T).T

        if direction == 'forward':

            # apply cube-root compression:
            rgbc = rgb**(cp)

            # calculate achromatic and color difference signals, A, a, b:
            Aab = np.dot(MAab, rgbc.T).T
            A, a, b = asplit(Aab)
            A = cA * A
            a = ca * a
            b = cb * b

            # calculate colorfullness like signal M:
            M = cM * ((a**2.0 + b**2.0)**0.5)

            # calculate brightness Q:
            Q = A + cHK[0] * M**cHK[
                1]  # last term is contribution of Helmholtz-Kohlrausch effect on brightness

            # calculate saturation, s:
            s = M / Q

            # calculate amount of white, W:
            W = 100.0 / (1.0 + cW[0] * (s**cW[1]))

            #  adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after)
            Q = Q * (fov / 10.0)**cfov

            # calculate hue, h and Hue quadrature, H:
            h = hue_angle(a, b, htype='deg')

            if 'H' in outin:
                H = hue_quadrature(h, unique_hue_data=unique_hue_data)
            else:
                H = None

            # calculate cart. co.:
            if 'aM' in outin:
                aM = M * np.cos(h * np.pi / 180.0)
                bM = M * np.sin(h * np.pi / 180.0)

            if 'aS' in outin:
                aS = s * np.cos(h * np.pi / 180.0)
                bS = s * np.sin(h * np.pi / 180.0)

            if 'aW' in outin:
                aW = W * np.cos(h * np.pi / 180.0)
                bW = W * np.sin(h * np.pi / 180.0)

            if (outin != ['Q', 'aW', 'bW']):
                camout[i] = eval('ajoin((' + ','.join(outin) + '))')
            else:
                camout[i] = ajoin((Q, aW, bW))

        elif direction == 'inverse':

            # get Q, M and a, b depending on input type:
            if 'aW' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                W = (a**2.0 + b**2.0)**0.5
                s = (((100 / W) - 1.0) / cW[0])**(1.0 / cW[1])
                M = s * Q

            if 'aM' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                M = (a**2.0 + b**2.0)**0.5

            if 'aS' in outin:
                Q, a, b = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                s = (a**2.0 + b**2.0)**0.5
                M = s * Q

            if 'h' in outin:
                Q, WsM, h = asplit(data[i])
                Q = Q / (
                    (fov / 10.0)**cfov
                )  #adjust Q for size (fov) of stimulus back to that 10° ref
                if 'W' in outin:
                    s = (((100.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1])
                    M = s * Q
                elif 's' in outin:
                    M = WsM * Q
                elif 'M' in outin:
                    M = WsM

            # calculate achromatic signal, A from Q and M:
            A = Q - cHK[0] * M**cHK[1]
            A = A / cA

            # calculate hue angle:
            h = hue_angle(a, b, htype='rad')

            # calculate a,b from M and h:
            a = (M / cM) * np.cos(h)
            b = (M / cM) * np.sin(h)
            a = a / ca
            b = b / cb

            # create Aab:
            Aab = ajoin((A, a, b))

            # calculate rgbc:
            rgbc = np.dot(invMAab, Aab.T).T

            # decompress rgbc to rgb:
            rgb = rgbc**(1 / cp)

            # convert rgb to xyz:
            xyz = np.dot(invMxyz2rgb, rgb.T).T

            camout[i] = xyz

    if flipaxis0and1 == True:  # loop over shortest dim.
        camout = np.transpose(camout, axes=(1, 0, 2))

    if camout.shape[0] == 1:
        camout = np.squeeze(camout, axis=0)

    return camout
Exemple #18
0
def fit_ellipse(xy, center_on_mean_xy=False):
    """
    Fit an ellipse to supplied data points.

    Args:
        :xy: 
            | coordinates of points to fit (Nx2 array)
        :center_on_mean_xy:
            | False, optional
            | Center ellipse on mean of xy 
            | (otherwise it might be offset due to solving 
            | the contrained minization problem: aT*S*a, see ref below.)
            
    Returns:
        :v:
            | vector with ellipse parameters [Rmax,Rmin, xc,yc, theta]
            
    Reference:
        1. Fitzgibbon, A.W., Pilu, M., and Fischer R.B., 
        Direct least squares fitting of ellipsees, 
        Proc. of the 13th Internation Conference on Pattern Recognition, 
        pp 253–257, Vienna, 1996.
    """
    # remove centroid:
    #    center = xy.mean(axis=0)
    #    xy = xy - center

    # Fit ellipse:
    x, y = xy[:, 0:1], xy[:, 1:2]
    D = np.hstack((x * x, x * y, y * y, x, y, np.ones_like(x)))
    S, C = np.dot(D.T, D), np.zeros([6, 6])
    C[0, 2], C[2, 0], C[1, 1] = 2, 2, -1
    U, s, V = np.linalg.svd(np.dot(np.linalg.inv(S), C))
    e = U[:, 0]
    #    E, V =  np.linalg.eig(np.dot(np.linalg.inv(S), C))
    #    n = np.argmax(np.abs(E))
    #    e = V[:,n]

    # get ellipse axis lengths, center and orientation:
    b, c, d, f, g, a = e[1] / 2, e[2], e[3] / 2, e[4] / 2, e[5], e[0]

    # get ellipse center:
    num = b * b - a * c
    if num == 0:
        xc = 0
        yc = 0
    else:
        xc = ((c * d - b * f) / num)
        yc = ((a * f - b * d) / num)

    # get ellipse orientation:
    theta = np.arctan2(np.array(2 * b), np.array((a - c))) / 2
    #    if b == 0:
    #        if a > c:
    #            theta = 0
    #        else:
    #            theta = np.pi/2
    #    else:
    #        if a > c:
    #            theta = np.arctan2(2*b,(a-c))/2
    #        else:
    #            theta =  np.arctan2(2*b,(a-c))/2 + np.pi/2

    # axis lengths:
    up = 2 * (a * f * f + c * d * d + g * b * b - 2 * b * d * f - a * c * g)
    down1 = (b * b - a * c) * ((c - a) * np.sqrt(1 + 4 * b * b / ((a - c) *
                                                                  (a - c))) -
                               (c + a))
    down2 = (b * b - a * c) * ((a - c) * np.sqrt(1 + 4 * b * b / ((a - c) *
                                                                  (a - c))) -
                               (c + a))
    a, b = np.sqrt((up / down1)), np.sqrt((up / down2))

    # assert that a is the major axis (otherwise swap and correct angle)
    if (b > a):
        b, a = a, b
        # ensure the angle is betwen 0 and 2*pi
        theta = fmod(theta, 2.0 * np.pi)

    if center_on_mean_xy == True:
        xc, yc = xy.mean(axis=0)

    return np.hstack((a, b, xc, yc, theta))
Exemple #19
0
def run(data, xyzw, out = 'J,aM,bM', conditions = None, forward = True):
    """ 
    Run CIECAM02 color appearance model in forward or backward modes.
    
    Args:
        :data:
            | ndarray with relative sample xyz values (forward mode) or J'a'b' coordinates (inverse mode)
        :xyzw:
            | ndarray with relative white point tristimulus values  
        :conditions:
            | None, optional
            | Dictionary with viewing conditions.
            | None results in:
            |   {'La':100, 'Yb':20, 'D':1, 'surround':'avg'}
            | For more info see luxpy.cam.ciecam02()?
        :forward:
            | True, optional
            | If True: run in CAM in forward mode, else: inverse mode.
        :out:
            | 'J,aM,bM', optional
            | String with requested output (e.g. "J,aM,bM,M,h") [Forward mode]
            | String with inputs in data. 
            | Input must have data.shape[-1]==3 and last dim of data must have 
            | the following structure: 
            |  * data[...,0] = J or Q,
            |  * data[...,1:] = (aM,bM) or (aC,bC) or (aS,bS)
    Returns:
        :camout:
            | ndarray with Jab coordinates or whatever correlates requested in out.
    
    Note:
        * This is a simplified, less flexible, but faster version than the main ciecam02().
    
    References:
        1. `N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, (2002), 
        "The CIECAM02 color appearance model,” 
        IS&T/SID Tenth Color Imaging Conference. p. 23, 2002.
        <http://rit-mcsl.org/fairchild/PDFs/PRO19.pdf>`_
    """
    outin = out.split(',') if isinstance(out,str) else out
    
    #--------------------------------------------
    # Get/ set conditions parameters:
    if conditions is not None:
        surround_parameters =  {'surrounds': ['avg', 'dim', 'dark'], 
                                'avg' : {'c':0.69, 'Nc':1.0, 'F':1.0,'FLL': 1.0}, 
                                'dim' : {'c':0.59, 'Nc':0.9, 'F':0.9,'FLL':1.0} ,
                                'dark' : {'c':0.525, 'Nc':0.8, 'F':0.8,'FLL':1.0}}
        La = conditions['La']
        Yb = conditions['Yb']
        D = conditions['D']
        surround = conditions['surround']
        if isinstance(surround, str):
            surround = surround_parameters[conditions['surround']]
        F, FLL, Nc, c = [surround[x] for x in sorted(surround.keys())]
    else:
        # set defaults:
        La, Yb, D, F, FLL, Nc, c = 100, 20, 1, 1, 1, 1, 0.69
        
    #--------------------------------------------
    # Define sensor space and cat matrices:        
    mhpe = np.array([[0.38971,0.68898,-0.07868],
                     [-0.22981,1.1834,0.04641],
                     [0.0,0.0,1.0]]) # Hunt-Pointer-Estevez sensors (cone fundamentals)
    
    mcat = np.array([[0.7328, 0.4296, -0.1624],
                       [ -0.7036, 1.6975,  0.0061],
                       [ 0.0030, 0.0136,  0.9834]]) # CAT02 sensor space
    
    #--------------------------------------------
    # pre-calculate some matrices:
    invmcat = np.linalg.inv(mcat)
    mhpe_x_invmcat = np.dot(mhpe,invmcat)
    if not forward: mcat_x_invmhpe = np.dot(mcat,np.linalg.inv(mhpe))
    
    #--------------------------------------------
    # calculate condition dependent parameters:
    Yw = xyzw[...,1:2].T
    k = 1.0 / (5.0*La + 1.0)
    FL = 0.2*(k**4.0)*(5.0*La) + 0.1*((1.0 - k**4.0)**2.0)*((5.0*La)**(1.0/3.0)) # luminance adaptation factor
    n = Yb/Yw 
    Nbb = 0.725*(1/n)**0.2   
    Ncb = Nbb
    z = 1.48 + FLL*n**0.5
    
    if D is None:
        D = F*(1.0-(1.0/3.6)*np.exp((-La-42.0)/92.0))
        
    #===================================================================
    # WHITE POINT transformations (common to forward and inverse modes):
    
    #--------------------------------------------
    # transform from xyzw to cat sensor space:
    rgbw = mcat @ xyzw.T
    
    #--------------------------------------------  
    # apply von Kries cat:
    rgbwc = ((D*Yw/rgbw) + (1 - D))*rgbw # factor 100 from ciecam02 is replaced with Yw[i] in cam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.)

    #--------------------------------------------
    # convert from cat02 sensor space to cone sensors (hpe):
    rgbwp = (mhpe_x_invmcat @ rgbwc).T
    
    #--------------------------------------------
    # apply Naka_rushton repsonse compression to white:
    NK = lambda x, forward: naka_rushton(x, scaling = 400, n = 0.42, sig = 27.13**(1/0.42), noise = 0.1, forward = forward)
    
    rgbwpa = NK(FL*rgbwp/100.0, True)
    pw = np.where(rgbwp<0)
    rgbwpa[pw] = 0.1 - (NK(FL*np.abs(rgbwp[pw])/100.0, True) - 0.1)
    
    #--------------------------------------------
    # Calculate achromatic signal of white:
    Aw =  (2.0*rgbwpa[...,0] + rgbwpa[...,1] + (1.0/20.0)*rgbwpa[...,2] - 0.305)*Nbb
    
    # massage shape of data for broadcasting:
    if data.ndim == 2: data = data[:,None]

    #===================================================================
    # STIMULUS transformations 
    if forward:
        
        #--------------------------------------------
        # transform from xyz to cat sensor space:
        rgb = math.dot23(mcat, data.T)
        
        #--------------------------------------------  
        # apply von Kries cat:
        rgbc = ((D*Yw/rgbw)[...,None] + (1 - D))*rgb # factor 100 from ciecam02 is replaced with Yw[i] in cam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.)
        
        #--------------------------------------------
        # convert from cat02 sensor space to cone sensors (hpe):
        rgbp = math.dot23(mhpe_x_invmcat,rgbc).T
        
        #--------------------------------------------
        # apply Naka_rushton repsonse compression:        
        rgbpa = NK(FL*rgbp/100.0, forward)
        p = np.where(rgbp<0)
        rgbpa[p] = 0.1 - (NK(FL*np.abs(rgbp[p])/100.0, forward) - 0.1)
        
        #--------------------------------------------
        # Calculate achromatic signal:
        A  =  (2.0*rgbpa[...,0] + rgbpa[...,1] + (1.0/20.0)*rgbpa[...,2] - 0.305)*Nbb
                
        #--------------------------------------------
        # calculate initial opponent channels:
        a = rgbpa[...,0] - 12.0*rgbpa[...,1]/11.0 + rgbpa[...,2]/11.0
        b = (1.0/9.0)*(rgbpa[...,0] + rgbpa[...,1] - 2.0*rgbpa[...,2])

        #--------------------------------------------
        # calculate hue h and eccentricity factor, et:
        h = hue_angle(a,b, htype = 'deg')
        et = (1.0/4.0)*(np.cos(h*np.pi/180 + 2.0) + 3.8)
        
        #-------------------------------------------- 
        # calculate Hue quadrature (if requested in 'out'):
        if 'H' in outin:    
            H = hue_quadrature(h, unique_hue_data = 'ciecam02')
        else:
            H = None
        
        #--------------------------------------------   
        # calculate lightness, J:
        if ('J' in outin) | ('Q' in outin) | ('C' in outin) | ('M' in outin) | ('s' in outin) | ('aS' in outin) | ('aC' in outin) | ('aM' in outin):
            J = 100.0* (A / Aw)**(c*z)
         
        #-------------------------------------------- 
        # calculate brightness, Q:
        if ('Q' in outin) | ('s' in outin) | ('aS' in outin):
            Q = (4.0/c)* ((J/100.0)**0.5) * (Aw + 4.0)*(FL**0.25)
          
        #-------------------------------------------- 
        # calculate chroma, C:
        if ('C' in outin) | ('M' in outin) | ('s' in outin) | ('aS' in outin) | ('aC' in outin) | ('aM' in outin):
            t = ((50000.0/13.0)*Nc*Ncb*et*((a**2.0 + b**2.0)**0.5)) / (rgbpa[...,0] + rgbpa[...,1] + (21.0/20.0*rgbpa[...,2]))
            C = (t**0.9)*((J/100.0)**0.5) * (1.64 - 0.29**n)**0.73
               
        #-------------------------------------------- 
        # calculate colorfulness, M:
        if ('M' in outin) | ('s' in outin) | ('aM' in outin) | ('aS' in outin):
            M = C*FL**0.25
        
        #--------------------------------------------         
        # calculate saturation, s:
        if ('s' in outin) | ('aS' in outin):
            s = 100.0* (M/Q)**0.5
        
        #--------------------------------------------            
        # calculate cartesian coordinates:
        if ('aS' in outin):
             aS = s*np.cos(h*np.pi/180.0)
             bS = s*np.sin(h*np.pi/180.0)
        
        if ('aC' in outin):
             aC = C*np.cos(h*np.pi/180.0)
             bC = C*np.sin(h*np.pi/180.0)
             
        if ('aM' in outin):
             aM = M*np.cos(h*np.pi/180.0)
             bM = M*np.sin(h*np.pi/180.0)
         
        #-------------------------------------------- 
        if outin != ['J','aM','bM']:
            camout = eval('ajoin(('+','.join(outin)+'))')
        else:
            camout = ajoin((J,aM,bM))
        
        if camout.shape[1] == 1:
            camout = camout[:,0,:]

        
        return camout
        
    elif forward == False:

                       
            #--------------------------------------------
            # Get Lightness J from data:
            if ('J' in outin):
                J = data[...,0].copy()
            elif ('Q' in outin):
                Q = data[...,0].copy()
                J = 100.0*(Q / ((Aw + 4.0)*(FL**0.25)*(4.0/c)))**2.0
            else:
                raise Exception('No lightness or brightness values in data. Inverse CAM-transform not possible!')
                
                
            #--------------------------------------------
            # calculate hue h:
            h = hue_angle(data[...,1],data[...,2], htype = 'deg')
            
            #--------------------------------------------
            # calculate Colorfulness M or Chroma C or Saturation s from a,b:
            MCs = (data[...,1]**2.0 + data[...,2]**2.0)**0.5    
            
            
            if ('aS' in outin):
                Q = (4.0/c)* ((J/100.0)**0.5) * (Aw + 4.0)*(FL**0.25)
                M = Q*(MCs/100.0)**2.0 
                C = M/(FL**0.25)
             
            if ('aM' in outin): # convert M to C:
                C = MCs/(FL**0.25)
            
            if ('aC' in outin):
                C = MCs
                
            #--------------------------------------------
            # calculate t from J, C:
            t = (C / ((J/100.0)**(1.0/2.0) * (1.64 - 0.29**n)**0.73))**(1.0/0.9)

            #--------------------------------------------
            # calculate eccentricity factor, et:
            et = (np.cos(h*np.pi/180.0 + 2.0) + 3.8) / 4.0
            
            #--------------------------------------------
            # calculate achromatic signal, A:
            A = Aw*(J/100.0)**(1.0/(c*z))

            #--------------------------------------------
            # calculate temporary cart. co. at, bt and p1,p2,p3,p4,p5:
            at = np.cos(h*np.pi/180.0)
            bt = np.sin(h*np.pi/180.0)
            p1 = (50000.0/13.0)*Nc*Ncb*et/t
            p2 = A/Nbb + 0.305
            p3 = 21.0/20.0
            p4 = p1/bt
            p5 = p1/at

            #--------------------------------------------
            #q = np.where(np.abs(bt) < np.abs(at))[0]
            q = (np.abs(bt) < np.abs(at))

            b = p2*(2.0 + p3) * (460.0/1403.0) / (p4 + (2.0 + p3) * (220.0/1403.0) * (at/bt) - (27.0/1403.0) + p3*(6300.0/1403.0))
            a = b * (at/bt)
            
            a[q] = p2[q]*(2.0 + p3) * (460.0/1403.0) / (p5[q] + (2.0 + p3) * (220.0/1403.0) - ((27.0/1403.0) - p3*(6300.0/1403.0)) * (bt[q]/at[q]))
            b[q] = a[q] * (bt[q]/at[q])
            
            #--------------------------------------------
            # calculate post-adaptation values
            rpa = (460.0*p2 + 451.0*a + 288.0*b) / 1403.0
            gpa = (460.0*p2 - 891.0*a - 261.0*b) / 1403.0
            bpa = (460.0*p2 - 220.0*a - 6300.0*b) / 1403.0
            
            #--------------------------------------------
            # join values:
            rgbpa = ajoin((rpa,gpa,bpa))

            #--------------------------------------------
            # decompress signals:
            rgbp = (100.0/FL)*NK(rgbpa, forward)

            #--------------------------------------------
            # convert from to cone sensors (hpe) cat02 sensor space:
            rgbc = math.dot23(mcat_x_invmhpe,rgbp.T)
                            
            #--------------------------------------------
            # apply inverse von Kries cat:
            rgb = rgbc / ((D*Yw/rgbw)[...,None] + (1.0 - D))
            
            #--------------------------------------------
            # transform from cat sensor space to xyz:
            xyz = math.dot23(invmcat,rgb).T
            
            
            return xyz
Exemple #20
0
def cam18sl(data, datab = None, Lb = [100], fov = 10.0, inputtype = 'xyz', direction = 'forward', outin = 'Q,aW,bW', parameters = None):
    """
    Convert between CIE 2006 10°  XYZ tristimulus values (or spectral data) 
    and CAM18sl color appearance correlates.
    
    Args:
        :data: 
            | ndarray of CIE 2006 10°  absolute XYZ tristimulus values or spectral data
              or color appearance attributes of stimulus
        :datab: 
            | ndarray of CIE 2006 10°  absolute XYZ tristimulus values or spectral data
              of stimulus background
        :Lb: 
            | [100], optional
            | Luminance (cd/m²) value(s) of background(s) calculated using the CIE 2006 10° CMFs 
            | (only used in case datab == None and the background is assumed to be an Equal-Energy-White)
        :fov: 
            | 10.0, optional
            | Field-of-view of stimulus (for size effect on brightness)
        :inputtpe:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam18sl
            |   -'inverse': cam18sl -> xyz 
        :outin:
            | 'Q,aW,bW' or str, optional
            | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral)
            |  other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation)
            | Str specifying the type of 
            |     input (:direction: == 'inverse') and 
            |     output (:direction: == 'forward')
        :parameters:
            | None or dict, optional
            | Set of model parameters.
            |   - None: defaults to luxpy.cam._CAM18SL_PARAMETERS 
            |    (see references below)
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
            
    Notes:
        | * Instead of using the CIE 1964 10° CMFs in some places of the model,
        |   the CIE 2006 10° CMFs are used througout, making it more self_consistent.
        |   This has an effect on the k scaling factors (now different those in CAM15u) 
        |   and the illuminant E normalization for use in the chromatic adaptation transform.
        |   (see future erratum to Hermans et al., 2018)
        | * The paper also used an equation for the amount of white W, which is
        |   based on a Q value not expressed in 'bright' ('cA' = 0.937 instead of 123). 
        |   This has been corrected for in the luxpy version of the model, i.e.
        |   _CAM18SL_PARAMETERS['cW'][0] has been changed from 2.29 to 1/11672.
        |   (see future erratum to Hermans et al., 2018)

    References: 
        1. `Hermans, S., Smet, K. A. G., & Hanselaer, P. (2018). 
        "Color appearance model for self-luminous stimuli."
        Journal of the Optical Society of America A, 35(12), 2000–2009. 
        <https://doi.org/10.1364/JOSAA.35.002000>`_ 
     """
    
    if parameters is None:
        parameters = _CAM18SL_PARAMETERS
        
    outin = outin.split(',')    
    
    #unpack model parameters:
    cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, k, naka, unique_hue_data = [parameters[x] for x in sorted(parameters.keys())]
    
    # precomputations:
    Mlms2xyz = np.linalg.inv(_CMF['2006_10']['M'])
    MAab = np.array([cAlms,calms,cblms])
    invMAab = np.linalg.inv(MAab)    
    
    #-------------------------------------------------
    # setup EEW reference field and default background field (Lr should be equal to Lb):
    # Get Lb values:
    if datab is not None:
        if inputtype != 'xyz':
            Lb = spd_to_xyz(datab, cieobs = '2006_10', relative = False)[...,1:2]
        else:
            Lb = datab[...,1:2]
    else:
        if isinstance(Lb,list):
            Lb = np2dT(Lb)

    # Setup EEW ref of same luminance as datab:
    if inputtype == 'xyz':
        wlr = getwlr(_CAM18SL_WL3)
    else:
        if datab is None:
            wlr = data[0] # use wlr of stimulus data
        else:
            wlr = datab[0] # use wlr of background data
    datar = np.vstack((wlr,np.ones((Lb.shape[0], wlr.shape[0])))) # create eew
    xyzr = spd_to_xyz(datar, cieobs = '2006_10', relative = False) # get abs. tristimulus values
    datar[1:] = datar[1:]/xyzr[...,1:2]*Lb
    # Create datab if None:
    if (datab is None):
        if inputtype != 'xyz':
            datab = datar.copy()
        else:
            datab = spd_to_xyz(datar, cieobs = '2006_10', relative = False)
            datar = datab.copy()

 
    # prepare data and datab for loop over backgrounds: 
    # make axis 1 of datab have 'same' dimensions as data:         
    if (data.ndim == 2): 
        data = np.expand_dims(data, axis = 1)  # add light source axis 1     

    if inputtype == 'xyz': 
        if datab.shape[0] == 1: #make datab and datar have same lights source dimension (used to store different backgrounds) size as data
            datab = np.repeat(datab,data.shape[1],axis=0)  
            datar = np.repeat(datar,data.shape[1],axis=0)               
    else:
        if datab.shape[0] == 2:
            datab = np.vstack((datab[0],np.repeat(datab[1:], data.shape[1], axis = 0)))
        if datar.shape[0] == 2:
            datar = np.vstack((datar[0],np.repeat(datar[1:], data.shape[1], axis = 0)))

    # Flip light source/ background dim to axis 0:
    data = np.transpose(data, axes = (1,0,2))

    #-------------------------------------------------
    
    #initialize camout:     
    dshape = list(data.shape)
    dshape[-1] = len(outin) # requested number of correlates
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral
    camout = np.nan*np.ones(dshape)
    
  
    for i in range(data.shape[0]):
       
        # get rho, gamma, beta of background and reference white:
        if (inputtype != 'xyz'):
            xyzb = spd_to_xyz(np.vstack((datab[0], datab[i+1:i+2,:])), cieobs = '2006_10', relative = False)
            xyzr = spd_to_xyz(np.vstack((datar[0], datar[i+1:i+2,:])), cieobs = '2006_10', relative = False)
        else:
            xyzb = datab[i:i+1,:] 
            xyzr = datar[i:i+1,:] 

        lmsb = np.dot(_CMF['2006_10']['M'],xyzb.T).T # convert to l,m,s
        rgbb = (lmsb / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta
        #lmsr = np.dot(_CMF['2006_10']['M'],xyzr.T).T # convert to l,m,s
        #rgbr = (lmsr / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta
        #rgbr = rgbr/rgbr[...,1:2]*Lb[i] # calculated EEW cone excitations at same luminance values as background
        rgbr = np.ones(xyzr.shape)*Lb[i] # explicitely equal EEW cone excitations at same luminance values as background

        if direction == 'forward':
            # get rho, gamma, beta of stimulus:
            if (inputtype != 'xyz'):
                xyz = spd_to_xyz(data[i], cieobs = '2006_10', relative = False)   
            elif (inputtype == 'xyz'):
                xyz = data[i]
            lms = np.dot(_CMF['2006_10']['M'],xyz.T).T # convert to l,m,s
            rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta

            # apply von-kries cat with D = 1:
            if (rgbb == 0).any():
                Mcat = np.eye(3)
            else:
                Mcat = np.diag((rgbr/rgbb)[0])
            rgba = np.dot(Mcat,rgb.T).T

            # apply naka-rushton compression:
            rgbc = naka_rushton(rgba, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling'])

            #rgbc = np.ones(rgbc.shape)*rgbc.mean() # test if eew ends up at origin
            
            # calculate achromatic and color difference signals, A, a, b:
            Aab = np.dot(MAab, rgbc.T).T
            A,a,b = asplit(Aab)
            a = ca*a
            b = cb*b

            # calculate colorfullness like signal M:
            M = cM*((a**2.0 + b**2.0)**0.5)

            # calculate brightness Q:
            Q = cA*(A + cHK[0]*M**cHK[1]) # last term is contribution of Helmholtz-Kohlrausch effect on brightness

            # calculate saturation, s:
            s = M / Q

            # calculate amount of white, W:
            W = 1 / (1.0 + cW[0]*(s**cW[1]))

            #  adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after)
            Q = Q*(fov/10.0)**cfov

            # calculate hue, h and Hue quadrature, H:
            h = hue_angle(a,b, htype = 'deg')
            if 'H' in outin:
                H = hue_quadrature(h, unique_hue_data = unique_hue_data)
            else:
                H = None

            # calculate cart. co.:
            if 'aM' in outin:
                aM = M*np.cos(h*np.pi/180.0)
                bM = M*np.sin(h*np.pi/180.0)
            
            if 'aS' in outin:
                aS = s*np.cos(h*np.pi/180.0)
                bS = s*np.sin(h*np.pi/180.0)
            
            if 'aW' in outin:
                aW = W*np.cos(h*np.pi/180.0)
                bW = W*np.sin(h*np.pi/180.0)

            if (outin != ['Q','aW','bW']):
                camout[i] =  eval('ajoin(('+','.join(outin)+'))')
            else:
                camout[i] = ajoin((Q,aW,bW))
    
        
        elif direction == 'inverse':

            # get Q, M and a, b depending on input type:        
            if 'aW' in outin:
                Q,a,b = asplit(data[i])
                Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref
                W = (a**2.0 + b**2.0)**0.5
                s = (((1.0 / W) - 1.0)/cW[0])**(1.0/cW[1])
                M = s*Q
                
            
            if 'aM' in outin:
                Q,a,b = asplit(data[i])
                Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref
                M = (a**2.0 + b**2.0)**0.5
            
            if 'aS' in outin:
                Q,a,b = asplit(data[i])
                Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref
                s = (a**2.0 + b**2.0)**0.5
                M = s*Q
                      
            if 'h' in outin:
                Q, WsM, h = asplit(data[i])
                Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref
                if 'W' in outin:
                     s = (((1.0 / WsM) - 1.0)/cW[0])**(1.0/cW[1])
                     M = s*Q
                elif 's' in outin:
                     M = WsM*Q
                elif 'M' in outin:
                     M = WsM
            
            # calculate achromatic signal, A from Q and M:
            A = Q/cA - cHK[0]*M**cHK[1]

            # calculate hue angle:
            h = hue_angle(a,b, htype = 'rad')
            
            # calculate a,b from M and h:
            a = (M/cM)*np.cos(h)
            b = (M/cM)*np.sin(h)

            a = a/ca
            b = b/cb

            # create Aab:
            Aab = ajoin((A,a,b))    

            # calculate rgbc:
            rgbc = np.dot(invMAab, Aab.T).T    

            # decompress rgbc to (adapted) rgba :
            rgba = naka_rushton(rgbc, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling'], direction = 'inverse')

            # apply inverse von-kries cat with D = 1:
            rgb = np.dot(np.diag((rgbb/rgbr)[0]),rgba.T).T

            # convert rgb to lms to xyz:
            lms = rgb/k*_CMF['2006_10']['K']  
            xyz = np.dot(Mlms2xyz,lms.T).T 
            
            camout[i] = xyz
    
    if camout.shape[0] == 1:
        camout = np.squeeze(camout,axis = 0)
    
    return camout
Exemple #21
0
def cam_sww16(data, dataw = None, Yb = 20.0, Lw = 400.0, Ccwb = None, relative = True, \
              parameters = None, inputtype = 'xyz', direction = 'forward', \
              cieobs = '2006_10'):
    """
    A simple principled color appearance model based on a mapping 
    of the Munsell color system.
    
    | This function implements the JOSA A (parameters = 'JOSA') published model. 
    
    Args:
        :data: 
            | ndarray with input tristimulus values 
            | or spectral data 
            | or input color appearance correlates
            | Can be of shape: (N [, xM], x 3), whereby: 
            | N refers to samples and M refers to light sources.
            | Note that for spectral input shape is (N x (M+1) x wl) 
        :dataw: 
            | None or ndarray, optional
            | Input tristimulus values or spectral data of white point.
            | None defaults to the use of CIE illuminant C.
        :Yb: 
            | 20.0, optional
            | Luminance factor of background (perfect white diffuser, Yw = 100)
        :Lw:
            | 400.0, optional
            | Luminance (cd/m²) of white point.
        :Ccwb:
            | None,  optional
            | Degree of cognitive adaptation (white point balancing)
            | If None: use [..,..] from parameters dict.
        :relative:
            | True or False, optional
            | True: xyz tristimulus values are relative (Yw = 100)
        :parameters:
            | None or str or dict, optional
            | Dict with model parameters.
            |    - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA']
            |    - str: 'best-fit-JOSA' or 'best-fit-all-Munsell'
            |    - dict: user defined model parameters 
            |            (dict should have same structure)
        :inputtype:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam_sww_2016
            |   -'inverse': cam_sww_2016 -> xyz 
        :cieobs:
            | '2006_10', optional
            | CMF set to use to perform calculations where spectral data 
              is involved (inputtype == 'spd'; dataw = None)
            | Other options: see luxpy._CMF['types']
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
    
    Notes:
        | This function implements the JOSA A (parameters = 'JOSA') 
          published model. 
        | With:
        |    1. A correction for the parameter 
        |         in Eq.4 of Fig. 11: 0.952 --> -0.952 
        |         
        |     2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f 
        |         should be: -0.028 & 0.821 
        |  
        |     (cfr. Ccwb = 0.66 in: 
        |         ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int))
             
    References:
        1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). 
        A simple principled approach for modeling and understanding uniform color metrics. 
        Journal of the Optical Society of America A, 33(3), A319–A331. 
        <https://doi.org/10.1364/JOSAA.33.00A319>`_

    """

    # get model parameters
    args = locals().copy() 
    if parameters is None:
        parameters = _CAM_SWW16_PARAMETERS['JOSA']
    if isinstance(parameters,str):
        parameters = _CAM_SWW16_PARAMETERS[parameters]
    parameters = put_args_in_db(parameters,args)  #overwrite parameters with other (not-None) args input 
      
    #unpack model parameters:
    Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta,cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0  = [parameters[x] for x in sorted(parameters.keys())]
    
    # setup default adaptation field:   
    if (dataw is None):
        dataw = _CIE_ILLUMINANTS['C'].copy() # get illuminant C
        xyzw = spd_to_xyz(dataw, cieobs = cieobs,relative=False) # get abs. tristimulus values
        if relative == False: #input is expected to be absolute
            dataw[1:] = Lw*dataw[1:]/xyzw[:,1:2] #dataw = Lw*dataw # make absolute
        else:
            dataw = dataw # make relative (Y=100)
        if inputtype == 'xyz':
            dataw = spd_to_xyz(dataw, cieobs = cieobs, relative = relative)

    # precomputations:
    Mxyz2lms = np.dot(np.diag(cLMS),math.normalize_3x3_matrix(Mxyz2lms, np.array([[1, 1, 1]]))) # normalize matrix for xyz-> lms conversion to ill. E weighted with cLMS   
    invMxyz2lms = np.linalg.inv(Mxyz2lms)
    MAab = np.array([clambda,calpha,cbeta])
    invMAab = np.linalg.inv(MAab)
    
    #initialize data and camout:
    data = np2d(data).copy() # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd))
    dataw = np2d(dataw).copy() # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd)

    # make axis 1 of dataw have 'same' dimensions as data:         
    if (data.ndim == 2): 
        data = np.expand_dims(data, axis = 1)  # add light source axis 1     

    if inputtype == 'xyz': 
        if dataw.shape[0] == 1: #make dataw have same lights source dimension size as data
            dataw = np.repeat(dataw,data.shape[1],axis=0)                
    else:
        if dataw.shape[0] == 2:
            dataw = np.vstack((dataw[0],np.repeat(dataw[1:], data.shape[1], axis = 0)))

    # Flip light source dim to axis 0:
    data = np.transpose(data, axes = (1,0,2))
  
    # Initialize output array:
    dshape = list(data.shape)
    dshape[-1] = 3 # requested number of correlates: l_int, a_int, b_int
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral
    camout = np.nan*np.ones(dshape)

    # apply forward/inverse model for each row in data:
    for i in range(data.shape[0]):

        # stage 1: calculate photon rates of stimulus and adapting field, lmst & lmsf:
        if (inputtype != 'xyz'):            
            if relative == True:
                xyzw_abs = spd_to_xyz(np.vstack((dataw[0],dataw[i+1])), cieobs = cieobs, relative = False)
                dataw[i+1] = Lw*dataw[i+1]/xyzw_abs[0,1] # make absolute
            xyzw = spd_to_xyz(np.vstack((dataw[0],dataw[i+1])), cieobs = cieobs, relative = False)
            lmsw = 683.0*np.dot(Mxyz2lms,xyzw.T).T/_CMF[cieobs]['K']
            lmsf = (Yb/100.0)*lmsw # calculate adaptation field and convert to l,m,s
            if (direction == 'forward'):
                if relative == True:
                    data[i,1:,:] = Lw*data[i,1:,:]/xyzw_abs[0,1] # make absolute
                xyzt = spd_to_xyz(data[i], cieobs = cieobs, relative = False)/_CMF[cieobs]['K'] 
                lmst = 683.0*np.dot(Mxyz2lms,xyzt.T).T # convert to l,m,s
            else:
                lmst = lmsf # put lmsf in lmst for inverse-mode

        elif (inputtype == 'xyz'):
            if relative == True: 
                dataw[i] = Lw*dataw[i]/100.0 # make absolute
            lmsw = 683.0* np.dot(Mxyz2lms, dataw[i].T).T /_CMF[cieobs]['K']  # convert to lms
            lmsf = (Yb/100.0)*lmsw
            if (direction == 'forward'):
                if relative == True:
                    data[i] = Lw*data[i]/100.0 # make absolute
                lmst = 683.0* np.dot(Mxyz2lms, data[i].T).T /_CMF[cieobs]['K'] # convert to lms
            else:
                 lmst = lmsf # put lmsf in lmst for inverse-mode

        # stage 2: calculate cone outputs of stimulus lmstp
        lmstp = math.erf(Cc*(np.log(lmst/lms0) + Cf*np.log(lmsf/lms0)))
        lmsfp = math.erf(Cc*(np.log(lmsf/lms0) + Cf*np.log(lmsf/lms0)))
        lmstp = np.vstack((lmsfp,lmstp)) # add adaptation field lms temporarily to lmsp for quick calculation
        
        
        # stage 3: calculate optic nerve signals, lam*, alphp, betp:
        lstar,alph, bet = asplit(np.dot(MAab, lmstp.T).T)

        alphp = cga1[0]*alph
        alphp[alph<0] = cga1[1]*alph[alph<0]
        betp = cgb1[0]*bet
        betp[bet<0] = cgb1[1]*bet[bet<0]
        
        # stage 4: calculate recoded nerve signals, alphapp, betapp:
        alphpp = cga2[0]*(alphp + betp)
        betpp = cgb2[0]*(alphp - betp)

        # stage 5: calculate conscious color perception:
        lstar_int = cl_int[0]*(lstar + cl_int[1])
        alph_int = cab_int[0]*(np.cos(cab_int[1]*np.pi/180.0)*alphpp - np.sin(cab_int[1]*np.pi/180.0)*betpp)
        bet_int = cab_int[0]*(np.sin(cab_int[1]*np.pi/180.0)*alphpp + np.cos(cab_int[1]*np.pi/180.0)*betpp)
        lstar_out = lstar_int
        
        if direction == 'forward':
            if Ccwb is None:
                alph_out = alph_int - cab_out[0]
                bet_out = bet_int -  cab_out[1]
            else:
                Ccwb = Ccwb*np.ones((2))
                Ccwb[Ccwb<0.0] = 0.0
                Ccwb[Ccwb>1.0] = 1.0
                alph_out = alph_int - Ccwb[0]*alph_int[0] # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                bet_out = bet_int -  Ccwb[1]*bet_int[0]
  
            camout[i] = np.vstack((lstar_out[1:],alph_out[1:],bet_out[1:])).T # stack together and remove adaptation field from vertical stack
        elif direction == 'inverse':
            labf_int = np.hstack((lstar_int[0],alph_int[0],bet_int[0]))
            
            # get lstar_out, alph_out & bet_out for data:
            lstar_out, alph_out, bet_out = asplit(data[i])
        
            # stage 5 inverse: 
            # undo cortical white-balance:
            if Ccwb is None:
                alph_int = alph_out + cab_out[0]
                bet_int = bet_out +  cab_out[1]
            else:
                Ccwb = Ccwb*np.ones((2))
                Ccwb[Ccwb<0.0] = 0.0
                Ccwb[Ccwb>1.0] = 1.0
                alph_int = alph_out + Ccwb[0]*alph_int[0] #  inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                bet_int = bet_out +  Ccwb[1]*bet_int[0]

            lstar_int = lstar_out
            alphpp = (1.0 / cab_int[0]) * (np.cos(-cab_int[1]*np.pi/180.0)*alph_int - np.sin(-cab_int[1]*np.pi/180.0)*bet_int)
            betpp = (1.0 / cab_int[0]) * (np.sin(-cab_int[1]*np.pi/180.0)*alph_int + np.cos(-cab_int[1]*np.pi/180.0)*bet_int)
            lstar_int = lstar_out
            lstar = (lstar_int /cl_int[0]) - cl_int[1] 
            
            # stage 4 inverse:
            alphp = 0.5*(alphpp/cga2[0] + betpp/cgb2[0])  # <-- alphpp = (Cga2.*(alphp+betp));
            betp = 0.5*(alphpp/cga2[0] - betpp/cgb2[0]) # <-- betpp = (Cgb2.*(alphp-betp));

            # stage 3 invers:
            alph = alphp/cga1[0]
            bet = betp/cgb1[0]
            sa = np.sign(cga1[1])
            sb = np.sign(cgb1[1])
            alph[(sa*alphp)<0.0] = alphp[(sa*alphp)<0] / cga1[1] 
            bet[(sb*betp)<0.0] = betp[(sb*betp)<0] / cgb1[1] 
            lab = ajoin((lstar, alph, bet))
            
            # stage 2 inverse:
            lmstp = np.dot(invMAab,lab.T).T 
            lmstp[lmstp<-1.0] = -1.0
            lmstp[lmstp>1.0] = 1.0

            lmstp = math.erfinv(lmstp) / Cc - Cf*np.log(lmsf/lms0)
            lmst = np.exp(lmstp) * lms0
            
            # stage 1 inverse:
            xyzt =  np.dot(invMxyz2lms,lmst.T).T   
            
            if relative == True:
                xyzt = (100.0/Lw) * xyzt
            
            camout[i] = xyzt
    
#    if flipaxis0and1 == True: # loop over shortest dim.
#        camout = np.transpose(camout, axes = (1,0,2))
    
    # Flip light source dim back to axis 1:
    camout = np.transpose(camout, axes = (1,0,2))

    if camout.shape[0] == 1:
        camout = np.squeeze(camout,axis = 0)
        
    return camout