def spher2cart(theta, phi, r=1., deg=True): """ Convert spherical to cartesian coordinates. Args: :theta: | Float, int or ndarray | Angle with positive z-axis. :phi: | Float, int or ndarray | Angle around positive z-axis starting from x-axis. :r: | 1, optional | Float, int or ndarray | radius Returns: :x, y, z: | tuple of floats, ints or ndarrays | Cartesian coordinates """ if deg == True: theta = np.deg2rad(theta) phi = np.deg2rad(phi) x = r * np.sin(theta) * np.cos(phi) y = r * np.sin(theta) * np.sin(phi) z = r * np.cos(theta) return x, y, z
def v_to_cik(v, inverse=False): """ Calculate 2x2 '(covariance matrix)^-1' elements cik Args: :v: | (Nx5) np.ndarray | ellipse parameters [Rmax,Rmin,xc,yc,theta] :inverse: | If True: return inverse of cik. Returns: :cik: 'Nx2x2' (covariance matrix)^-1 Notes: | cik is not actually a covariance matrix, | only for a Gaussian or normal distribution! """ v = np.atleast_2d(v) g11 = (1 / v[:, 0] * np.cos(v[:, 4]))**2 + (1 / v[:, 1] * np.sin(v[:, 4]))**2 g22 = (1 / v[:, 0] * np.sin(v[:, 4]))**2 + (1 / v[:, 1] * np.cos(v[:, 4]))**2 g12 = (1 / v[:, 0]**2 - 1 / v[:, 1]**2) * np.sin(v[:, 4]) * np.cos(v[:, 4]) cik = np.zeros((g11.shape[0], 2, 2)) for i in range(g11.shape[0]): cik[i, :, :] = np.vstack((np.hstack( (g11[i], g12[i])), np.hstack((g12[i], g22[i])))) if inverse == True: cik[i, :, :] = np.linalg.inv(cik[i, :, :]) return cik
def get_xyz(self, *args): theta, phi, r = args x = r * np.sin(theta) * np.cos(phi) y = r * np.sin(theta) * np.sin(phi) z = r * np.cos(theta) z[np.abs(z) < self._TINY] = 0.0 return x, y, z
def deltaH(h1, C1, h2=None, C2=None, htype='deg'): """ Compute a hue difference, dH = 2*C1*C2*sin(dh/2) Args: :h1: | hue for sample 1 (or hue difference if h2 is None) :C1: | chroma of sample 1 (or prod C1*C2 if C2 is None) :h2: | hue angle of sample 2 (if None, then h1 contains a hue difference) :C2: | chroma of sample 2 :htype: | 'deg' or 'rad', optional | - 'deg': hue angle between 0° and 360° | - 'rad': hue angle between 0 and 2pi radians Returns: :returns: | ndarray of deltaH values. """ if htype == 'deg': r2d = np.pi / 180 else: r2d = 1.0 if h2 is not None: deltah = h1 - h2 else: deltah = h1 if C2 is not None: Cprod = C1 * C2 else: Cprod = C1 return 2 * (Cprod)**0.5 * np.sin(r2d * deltah / 2)
def pol2cart(theta, r = None, htype = 'deg'): """ Convert Cartesion to polar coordinates. Args: :theta: | float or ndarray with theta-coordinates :r: | None or float or ndarray with r-coordinates, optional | If None, r-coordinates are assumed to be in :theta:. :htype: | 'deg' or 'rad, optional | Intput type of :theta:. Returns: :returns: | (float or ndarray of x, float or ndarray of y) coordinates """ if htype == 'deg': d2r = np.pi/180.0 else: d2r = 1.0 if r is None: r = theta[...,1].copy() theta = theta[...,0].copy() theta = theta*d2r return r*np.cos(theta), r*np.sin(theta)
def apply_poly_model_at_hue_x(poly_model, pmodel, dCHoverC_res, \ hx = None, Cxr = 40, sig = _VF_SIG): """ Applies base color shift model at (hue,chroma) coordinates Args: :poly_model: | function handle to model :pmodel: | ndarray with model parameters. :dCHoverC_res: | ndarray with residuals between 'dCoverC,dH' of samples | and 'dCoverC,dH' predicted by the model. | Note: dCoverC = (Ct - Cr)/Cr and dH = ht - hr | (predicted from model, see notes luxpy.cri.get_poly_model()) :hx: | None or ndarray, optional | None defaults to np.arange(np.pi/10.0,2*np.pi,2*np.pi/10.0) :Cxr: | 40, optional :sig: | _VF_SIG or float, optional | Determines smooth transition between hue-bin-boundaries (no hard cutoff at hue bin boundary). Returns: :returns: | ndarrays with dCoverC_x, dCoverC_x_sig, dH_x, dH_x_sig | Note '_sig' denotes the uncertainty: | e.g. dH_x_sig is the uncertainty of dH at input (hue/chroma). """ if hx is None: dh = 2*np.pi/10.0; hx = np.arange(dh/2,2*np.pi,dh) #hue angles at which to apply model, i.e. calculate 'average' measures # A calculate reference coordinates: axr = Cxr*np.cos(hx) bxr = Cxr*np.sin(hx) # B apply model at reference coordinates to obtain test coordinates: axt,bxt,Cxt,hxt,axr,bxr,Cxr,hxr = apply_poly_model_at_x(poly_model, pmodel,axr,bxr) # C Calculate dC/C, dH for test and ref at fixed hues: dCoverC_x = (Cxt-Cxr)/(np.hstack((Cxr+Cxt)).max()) dH_x = (180/np.pi)*(hxt-hxr) # dCoverC_x = np.round(dCoverC_x,decimals = 2) # dH_x = np.round(dH_x,decimals = 0) # D calculate 'average' noise measures using sig-value: href = dCHoverC_res[:,0:1] dCoverC_res = dCHoverC_res[:,1:2] dHoverC_res = dCHoverC_res[:,2:3] dHsigi = np.exp((np.dstack((np.abs(hx-href),np.abs((hx-href-2*np.pi)),np.abs(hx-href-2*np.pi))).min(axis=2)**2)/(-2)/sig) dH_x_sig = (180/np.pi)*(np.sqrt((dHsigi*(dHoverC_res**2)).sum(axis=0,keepdims=True)/dHsigi.sum(axis=0,keepdims=True))) #dH_x_sig_avg = np.sqrt(np.sum(dH_x_sig**2,axis=1)/hx.shape[0]) dCoverC_x_sig = (np.sqrt((dHsigi*(dCoverC_res**2)).sum(axis=0,keepdims=True)/dHsigi.sum(axis=0,keepdims=True))) #dCoverC_x_sig_avg = np.sqrt(np.sum(dCoverC_x_sig**2,axis=1)/hx.shape[0]) return dCoverC_x, dCoverC_x_sig, dH_x, dH_x_sig
def plotcircle(center = np.array([0.,0.]),\ radii = np.arange(0,60,10), \ angles = np.arange(0,350,10),\ color = 'k',linestyle = '--', out = None): """ Plot one or more concentric circles. Args: :center: | np.array([0.,0.]) or ndarray with center coordinates, optional :radii: | np.arange(0,60,10) or ndarray with radii of circle(s), optional :angles: | np.arange(0,350,10) or ndarray with angles (°), optional :color: | 'k', optional | Color for plotting. :linestyle: | '--', optional | Linestyle of circles. :out: | None, optional | If None: plot circles, return (x,y) otherwise. """ xs = np.array([0]) ys = xs.copy() for ri in radii: x = ri*np.cos(angles*np.pi/180) y = ri*np.sin(angles*np.pi/180) xs = np.hstack((xs,x)) ys = np.hstack((ys,y)) if out != 'x,y': plt.plot(x,y,color = color, linestyle = linestyle) if out == 'x,y': return xs,ys
def dtlz2(x, M): """ DTLZ2 multi-objective function This function represents a hyper-sphere. Using k = 10, the number of dimensions must be n = (M - 1) + k. The Pareto optimal solutions are obtained when the last k variables of x are equal to 0.5. Args: :x: | a n x mu ndarray with mu points and n dimensions :M: | a scalar with the number of objectives Returns: f: | a m x mu ndarray with mu points and their m objectives computed at | the input """ k = 10 # Error check: the number of dimensions must be M-1+k n = (M - 1) + k #this is the default if x.shape[0] != n: raise Exception( 'Using k = 10, it is required that the number of dimensions be n = (M - 1) + k = {:1.0f} in this case.' .format(n)) xm = x[(n - k):, :].copy() #xm contains the last k variables g = ((xm - 0.5)**2).sum(axis=0) # Computes the functions: f = np.empty((M, x.shape[1])) f[0, :] = (1 + g) * np.prod(np.cos(np.pi / 2 * x[:(M - 1), :]), axis=0) for ii in range(1, M - 1): f[ii, :] = (1 + g) * np.prod(np.cos(np.pi / 2 * x[:(M - ii - 1), :]), axis=0) * np.sin( np.pi / 2 * x[M - ii - 1, :]) f[M - 1, :] = (1 + g) * np.sin(np.pi / 2 * x[0, :]) return f
def cik_to_v(cik, xyc=None, inverse=False): """ Calculate v-format ellipse descriptor from 2x2 'covariance matrix'^-1 cik Args: :cik: | 'Nx2x2' (covariance matrix)^-1 :inverse: | If True: input is inverse of cik. Returns: :v: | (Nx5) np.ndarray | ellipse parameters [Rmax,Rmin,xc,yc,theta] Notes: | cik is not actually the inverse covariance matrix, | only for a Gaussian or normal distribution! """ if cik.ndim < 3: cik = cik[None, ...] if inverse == True: for i in range(cik.shape[0]): cik[i, :, :] = np.linalg.inv(cik[i, :, :]) g11 = cik[:, 0, 0] g22 = cik[:, 1, 1] g12 = cik[:, 0, 1] theta = 0.5 * np.arctan2(2 * g12, (g11 - g22)) + (np.pi / 2) * (g12 < 0) #theta = theta2 + (np.pi/2)*(g12<0) #theta2 = theta cottheta = np.cos(theta) / np.sin(theta) #np.cot(theta) cottheta[np.isinf(cottheta)] = 0 a = 1 / np.sqrt((g22 + g12 * cottheta)) b = 1 / np.sqrt((g11 - g12 * cottheta)) # ensure largest ellipse axis is first (correct angle): c = b > a a[c], b[c], theta[c] = b[c], a[c], theta[c] + np.pi / 2 v = np.vstack((a, b, np.zeros(a.shape), np.zeros(a.shape), theta)).T # add center coordinates: if xyc is not None: v[:, 2:4] = xyc return v
def cik_to_v(cik, xyc=None, inverse=False): """ Calculate v-format ellipse descriptor from 2x2 'covariance matrix'^-1 cik Args: :cik: '2x2xN' (covariance matrix)^-1 Returns: :v: | (Nx5) np.ndarray | ellipse parameters [Rmax,Rmin,xc,yc,theta] Notes: | cik is not actually the inverse covariance matrix, | only for a Gaussian or normal distribution! """ if inverse == True: for i in np.arange(cik.shape[0]): cik[i, :, :] = np.linalg.inv(cik[i, :, :]) g11 = cik[:, 0, 0] g22 = cik[:, 1, 1] g12 = cik[:, 0, 1] theta2 = 1 / 2 * np.arctan2(2 * g12, (g11 - g22)) theta = theta2 + (np.pi / 2) * (g12 < 0) theta2 = theta cottheta = np.cos(theta) / np.sin(theta) #np.cot(theta) cottheta[np.isinf(cottheta)] = 0 a = 1 / np.sqrt((g22 + g12 * cottheta)) b = 1 / np.sqrt((g11 - g12 * cottheta)) v = np.vstack((a, b, np.zeros(a.shape), np.zeros(a.shape), theta)).T # add center coordinates: if xyc is not None: v[:, 2:4] = xyc return v
def xtransform(x, params): """ Converts unconstrained variables into their original domains. """ xtrans = np.zeros((params['n'])) # k allows some variables to be fixed, thus dropped from the optimization. k = 0 for i in np.arange(params['n']): if params['BoundClass'][i] == 1: # lower bound only xtrans[i] = params['LB'][i] + x[k]**2 elif params['BoundClass'][i] == 2: # upper bound only xtrans[i] = params['UB'][i] - x[k]**2 elif params['BoundClass'][i] == 3: # lower and upper bounds xtrans[i] = (np.sin(x[k]) + 1) / 2 xtrans[i] = xtrans[i] * (params['UB'][i] - params['LB'][i]) + params['LB'][i] # just in case of any floating point problems xtrans[i] = np.hstack( (params['LB'][i], np.hstack( (params['UB'][i], xtrans[i])).min())).max() elif params['BoundClass'][i] == 4: # fixed variable, bounds are equal, set it at either bound xtrans[i] = params['LB'][i] elif params['BoundClass'][i] == 0: # unconstrained variable. xtrans[i] = x[k] if params['BoundClass'][i] != 4: k += 1 return xtrans
def cam_sww16(data, dataw = None, Yb = 20.0, Lw = 400.0, Ccwb = None, relative = True, \ parameters = None, inputtype = 'xyz', direction = 'forward', \ cieobs = '2006_10'): """ A simple principled color appearance model based on a mapping of the Munsell color system. | This function implements the JOSA A (parameters = 'JOSA') published model. Args: :data: | ndarray with input tristimulus values | or spectral data | or input color appearance correlates | Can be of shape: (N [, xM], x 3), whereby: | N refers to samples and M refers to light sources. | Note that for spectral input shape is (N x (M+1) x wl) :dataw: | None or ndarray, optional | Input tristimulus values or spectral data of white point. | None defaults to the use of CIE illuminant C. :Yb: | 20.0, optional | Luminance factor of background (perfect white diffuser, Yw = 100) :Lw: | 400.0, optional | Luminance (cd/m²) of white point. :Ccwb: | None, optional | Degree of cognitive adaptation (white point balancing) | If None: use [..,..] from parameters dict. :relative: | True or False, optional | True: xyz tristimulus values are relative (Yw = 100) :parameters: | None or str or dict, optional | Dict with model parameters. | - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA'] | - str: 'best-fit-JOSA' or 'best-fit-all-Munsell' | - dict: user defined model parameters | (dict should have same structure) :inputtype: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam_sww_2016 | -'inverse': cam_sww_2016 -> xyz :cieobs: | '2006_10', optional | CMF set to use to perform calculations where spectral data is involved (inputtype == 'spd'; dataw = None) | Other options: see luxpy._CMF['types'] Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | This function implements the JOSA A (parameters = 'JOSA') published model. | With: | 1. A correction for the parameter | in Eq.4 of Fig. 11: 0.952 --> -0.952 | | 2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f | should be: -0.028 & 0.821 | | (cfr. Ccwb = 0.66 in: | ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int)) References: 1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). A simple principled approach for modeling and understanding uniform color metrics. Journal of the Optical Society of America A, 33(3), A319–A331. <https://doi.org/10.1364/JOSAA.33.00A319>`_ """ # get model parameters args = locals().copy() if parameters is None: parameters = _CAM_SWW16_PARAMETERS['JOSA'] if isinstance(parameters,str): parameters = _CAM_SWW16_PARAMETERS[parameters] parameters = put_args_in_db(parameters,args) #overwrite parameters with other (not-None) args input #unpack model parameters: Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta,cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [parameters[x] for x in sorted(parameters.keys())] # setup default adaptation field: if (dataw is None): dataw = _CIE_ILLUMINANTS['C'].copy() # get illuminant C xyzw = spd_to_xyz(dataw, cieobs = cieobs,relative=False) # get abs. tristimulus values if relative == False: #input is expected to be absolute dataw[1:] = Lw*dataw[1:]/xyzw[:,1:2] #dataw = Lw*dataw # make absolute else: dataw = dataw # make relative (Y=100) if inputtype == 'xyz': dataw = spd_to_xyz(dataw, cieobs = cieobs, relative = relative) # precomputations: Mxyz2lms = np.dot(np.diag(cLMS),math.normalize_3x3_matrix(Mxyz2lms, np.array([[1, 1, 1]]))) # normalize matrix for xyz-> lms conversion to ill. E weighted with cLMS invMxyz2lms = np.linalg.inv(Mxyz2lms) MAab = np.array([clambda,calpha,cbeta]) invMAab = np.linalg.inv(MAab) #initialize data and camout: data = np2d(data).copy() # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd)) dataw = np2d(dataw).copy() # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd) # make axis 1 of dataw have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis = 1) # add light source axis 1 if inputtype == 'xyz': if dataw.shape[0] == 1: #make dataw have same lights source dimension size as data dataw = np.repeat(dataw,data.shape[1],axis=0) else: if dataw.shape[0] == 2: dataw = np.vstack((dataw[0],np.repeat(dataw[1:], data.shape[1], axis = 0))) # Flip light source dim to axis 0: data = np.transpose(data, axes = (1,0,2)) # Initialize output array: dshape = list(data.shape) dshape[-1] = 3 # requested number of correlates: l_int, a_int, b_int if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.nan*np.ones(dshape) # apply forward/inverse model for each row in data: for i in range(data.shape[0]): # stage 1: calculate photon rates of stimulus and adapting field, lmst & lmsf: if (inputtype != 'xyz'): if relative == True: xyzw_abs = spd_to_xyz(np.vstack((dataw[0],dataw[i+1])), cieobs = cieobs, relative = False) dataw[i+1] = Lw*dataw[i+1]/xyzw_abs[0,1] # make absolute xyzw = spd_to_xyz(np.vstack((dataw[0],dataw[i+1])), cieobs = cieobs, relative = False) lmsw = 683.0*np.dot(Mxyz2lms,xyzw.T).T/_CMF[cieobs]['K'] lmsf = (Yb/100.0)*lmsw # calculate adaptation field and convert to l,m,s if (direction == 'forward'): if relative == True: data[i,1:,:] = Lw*data[i,1:,:]/xyzw_abs[0,1] # make absolute xyzt = spd_to_xyz(data[i], cieobs = cieobs, relative = False)/_CMF[cieobs]['K'] lmst = 683.0*np.dot(Mxyz2lms,xyzt.T).T # convert to l,m,s else: lmst = lmsf # put lmsf in lmst for inverse-mode elif (inputtype == 'xyz'): if relative == True: dataw[i] = Lw*dataw[i]/100.0 # make absolute lmsw = 683.0* np.dot(Mxyz2lms, dataw[i].T).T /_CMF[cieobs]['K'] # convert to lms lmsf = (Yb/100.0)*lmsw if (direction == 'forward'): if relative == True: data[i] = Lw*data[i]/100.0 # make absolute lmst = 683.0* np.dot(Mxyz2lms, data[i].T).T /_CMF[cieobs]['K'] # convert to lms else: lmst = lmsf # put lmsf in lmst for inverse-mode # stage 2: calculate cone outputs of stimulus lmstp lmstp = math.erf(Cc*(np.log(lmst/lms0) + Cf*np.log(lmsf/lms0))) lmsfp = math.erf(Cc*(np.log(lmsf/lms0) + Cf*np.log(lmsf/lms0))) lmstp = np.vstack((lmsfp,lmstp)) # add adaptation field lms temporarily to lmsp for quick calculation # stage 3: calculate optic nerve signals, lam*, alphp, betp: lstar,alph, bet = asplit(np.dot(MAab, lmstp.T).T) alphp = cga1[0]*alph alphp[alph<0] = cga1[1]*alph[alph<0] betp = cgb1[0]*bet betp[bet<0] = cgb1[1]*bet[bet<0] # stage 4: calculate recoded nerve signals, alphapp, betapp: alphpp = cga2[0]*(alphp + betp) betpp = cgb2[0]*(alphp - betp) # stage 5: calculate conscious color perception: lstar_int = cl_int[0]*(lstar + cl_int[1]) alph_int = cab_int[0]*(np.cos(cab_int[1]*np.pi/180.0)*alphpp - np.sin(cab_int[1]*np.pi/180.0)*betpp) bet_int = cab_int[0]*(np.sin(cab_int[1]*np.pi/180.0)*alphpp + np.cos(cab_int[1]*np.pi/180.0)*betpp) lstar_out = lstar_int if direction == 'forward': if Ccwb is None: alph_out = alph_int - cab_out[0] bet_out = bet_int - cab_out[1] else: Ccwb = Ccwb*np.ones((2)) Ccwb[Ccwb<0.0] = 0.0 Ccwb[Ccwb>1.0] = 1.0 alph_out = alph_int - Ccwb[0]*alph_int[0] # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation bet_out = bet_int - Ccwb[1]*bet_int[0] camout[i] = np.vstack((lstar_out[1:],alph_out[1:],bet_out[1:])).T # stack together and remove adaptation field from vertical stack elif direction == 'inverse': labf_int = np.hstack((lstar_int[0],alph_int[0],bet_int[0])) # get lstar_out, alph_out & bet_out for data: lstar_out, alph_out, bet_out = asplit(data[i]) # stage 5 inverse: # undo cortical white-balance: if Ccwb is None: alph_int = alph_out + cab_out[0] bet_int = bet_out + cab_out[1] else: Ccwb = Ccwb*np.ones((2)) Ccwb[Ccwb<0.0] = 0.0 Ccwb[Ccwb>1.0] = 1.0 alph_int = alph_out + Ccwb[0]*alph_int[0] # inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation bet_int = bet_out + Ccwb[1]*bet_int[0] lstar_int = lstar_out alphpp = (1.0 / cab_int[0]) * (np.cos(-cab_int[1]*np.pi/180.0)*alph_int - np.sin(-cab_int[1]*np.pi/180.0)*bet_int) betpp = (1.0 / cab_int[0]) * (np.sin(-cab_int[1]*np.pi/180.0)*alph_int + np.cos(-cab_int[1]*np.pi/180.0)*bet_int) lstar_int = lstar_out lstar = (lstar_int /cl_int[0]) - cl_int[1] # stage 4 inverse: alphp = 0.5*(alphpp/cga2[0] + betpp/cgb2[0]) # <-- alphpp = (Cga2.*(alphp+betp)); betp = 0.5*(alphpp/cga2[0] - betpp/cgb2[0]) # <-- betpp = (Cgb2.*(alphp-betp)); # stage 3 invers: alph = alphp/cga1[0] bet = betp/cgb1[0] sa = np.sign(cga1[1]) sb = np.sign(cgb1[1]) alph[(sa*alphp)<0.0] = alphp[(sa*alphp)<0] / cga1[1] bet[(sb*betp)<0.0] = betp[(sb*betp)<0] / cgb1[1] lab = ajoin((lstar, alph, bet)) # stage 2 inverse: lmstp = np.dot(invMAab,lab.T).T lmstp[lmstp<-1.0] = -1.0 lmstp[lmstp>1.0] = 1.0 lmstp = math.erfinv(lmstp) / Cc - Cf*np.log(lmsf/lms0) lmst = np.exp(lmstp) * lms0 # stage 1 inverse: xyzt = np.dot(invMxyz2lms,lmst.T).T if relative == True: xyzt = (100.0/Lw) * xyzt camout[i] = xyzt # if flipaxis0and1 == True: # loop over shortest dim. # camout = np.transpose(camout, axes = (1,0,2)) # Flip light source dim back to axis 1: camout = np.transpose(camout, axes = (1,0,2)) if camout.shape[0] == 1: camout = np.squeeze(camout,axis = 0) return camout
def Ydlep_to_xyz(Ydlep, cieobs=_CIEOBS, xyzw=_COLORTF_DEFAULT_WHITE_POINT, flip_axes=False, **kwargs): """ Convert Y, dominant (complementary) wavelength and excitation purity to XYZ tristimulus values. Args: :Ydlep: | ndarray with Y, dominant (complementary) wavelength and excitation purity :xyzw: | None or narray with tristimulus values of a single (!) native white point, optional | None defaults to xyz of CIE D65 using the :cieobs: observer. :cieobs: | luxpy._CIEOBS, optional | CMF set to use when calculating spectrum locus coordinates. :flip_axes: | False, optional | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function. | (single xyzw with is not flipped!) Returns: :xyz: | ndarray with tristimulus values """ Ydlep3 = np3d(Ydlep).copy().astype(np.float) # flip axis so that longest dim is on first axis (save time in looping): if (Ydlep3.shape[0] < Ydlep3.shape[1]) & (flip_axes == True): axes12flipped = True Ydlep3 = Ydlep3.transpose((1, 0, 2)) else: axes12flipped = False # convert xyzw to Yxyw: Yxyw = xyz_to_Yxy(xyzw) Yxywo = Yxyw.copy() # get spectrum locus Y,x,y and wavelengths: SL = _CMF[cieobs]['bar'] wlsl = SL[0, None].T Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None] # center on xyzw: Yxysl = Yxysl - Yxyw Yxyw = Yxyw - Yxyw #split: Y, dom, pur = asplit(Ydlep3) Yw, xw, yw = asplit(Yxyw) Ywo, xwo, ywo = asplit(Yxywo) Ysl, xsl, ysl = asplit(Yxysl) # loop over longest dim: x = np.empty(Y.shape) y = np.empty(Y.shape) for i in range(Ydlep3.shape[1]): # find closest wl's to dom: #wlslb,wlib = meshblock(wlsl,np.abs(dom[i,:])) #abs because dom<0--> complemtary wl wlib, wlslb = np.meshgrid(np.abs(dom[:, i]), wlsl) dwl = np.abs(wlslb - wlib) q1 = dwl.argmin(axis=0) # index of closest wl dwl[q1] = 10000.0 q2 = dwl.argmin(axis=0) # index of second closest wl # calculate x,y of dom: x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * ( np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0] ) # calculate x of dom. wl y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * ( np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0] ) # calculate y of dom. wl # calculate x,y of test: d_wl = (x_dom_wl**2.0 + y_dom_wl**2.0)**0.5 # distance from white point to dom d = pur[:, i] * d_wl hdom = math.positive_arctan(x_dom_wl, y_dom_wl, htype='deg') x[:, i] = d * np.cos(hdom * np.pi / 180.0) y[:, i] = d * np.sin(hdom * np.pi / 180.0) # complementary: pc = np.where(dom[:, i] < 0.0) hdom[pc] = hdom[pc] - np.sign(dom[:, i][pc] - 180.0) * 180.0 # get positive hue angle # calculate intersection of line through white point and test point and purple line: xy = np.vstack((x_dom_wl, y_dom_wl)).T xyw = np.vstack((xw, yw)).T xypl1 = np.vstack((xsl[0, None], ysl[0, None])).T xypl2 = np.vstack((xsl[-1, None], ysl[-1, None])).T da = (xy - xyw) db = (xypl2 - xypl1) dp = (xyw - xypl1) T = np.array([[0.0, -1.0], [1.0, 0.0]]) dap = np.dot(da, T) denom = np.sum(dap * db, axis=1, keepdims=True) num = np.sum(dap * dp, axis=1, keepdims=True) xy_linecross = (num / denom) * db + xypl1 d_linecross = np.atleast_2d( (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T[:, 0] x[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.cos( hdom[pc] * np.pi / 180) y[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.sin( hdom[pc] * np.pi / 180) Yxy = np.dstack((Ydlep3[:, :, 0], x + xwo, y + ywo)) if axes12flipped == True: Yxy = Yxy.transpose((1, 0, 2)) else: Yxy = Yxy.transpose((0, 1, 2)) return Yxy_to_xyz(Yxy).reshape(Ydlep.shape)
def spd_to_ies_tm30_metrics(SPD, cri_type = None, \ hbins = 16, start_hue = 0.0,\ scalef = 100, \ vf_model_type = _VF_MODEL_TYPE, \ vf_pcolorshift = _VF_PCOLORSHIFT,\ scale_vf_chroma_to_sample_chroma = False): """ Calculates IES TM30 metrics from spectral data. Args: :data: | numpy.ndarray with spectral data :cri_type: | None, optional | If None: defaults to cri_type = 'iesrf'. | Not none values of :hbins:, :start_hue: and :scalef: overwrite input in cri_type['rg_pars'] :hbins: | None or numpy.ndarray with sorted hue bin centers (°), optional :start_hue: | None, optional :scalef: | None, optional | Scale factor for reference circle. :vf_pcolorshift: | _VF_PCOLORSHIFT or user defined dict, optional | The polynomial models of degree 5 and 6 can be fully specified or summarized by the model parameters themselved OR by calculating the dCoverC and dH at resp. 5 and 6 hues. :VF_pcolorshift: specifies these hues and chroma level. :scale_vf_chroma_to_sample_chroma: | False, optional | Scale chroma of reference and test vf fields such that average of binned reference chroma equals that of the binned sample chroma before calculating hue bin metrics. Returns: :data: | dict with color rendering data: | - 'SPD' : ndarray test SPDs | - 'bjabt': ndarray with binned jab data under test SPDs | - 'bjabr': ndarray with binned jab data under reference SPDs | - 'cct' : ndarray with CCT of test SPD | - 'duv' : ndarray with distance to blackbody locus of test SPD | - 'Rf' : ndarray with general color fidelity indices | - 'Rg' : ndarray with gamut area indices | - 'Rfi' : ndarray with specific color fidelity indices | - 'Rfhi' : ndarray with local (hue binned) fidelity indices | - 'Rcshi': ndarray with local chroma shifts indices | - 'Rhshi': ndarray with local hue shifts indices | - 'Rt' : ndarray with general metameric uncertainty index Rt | - 'Rti' : ndarray with specific metameric uncertainty indices Rti | - 'Rfhi_vf' : ndarray with local (hue binned) fidelity indices | obtained from VF model predictions at color space | pixel coordinates | - 'Rcshi_vf': ndarray with local chroma shifts indices | (same as above) | - 'Rhshi_vf': ndarray with local hue shifts indices | (same as above) """ if cri_type is None: cri_type = 'iesrf' #Calculate color rendering measures for SPDs in data: out = 'Rf,Rg,cct,duv,Rfi,jabt,jabr,Rfhi,Rcshi,Rhshi,cri_type' if isinstance(cri_type, str): # get dict cri_type = _CRI_DEFAULTS[cri_type].copy() if hbins is not None: cri_type['rg_pars']['nhbins'] = hbins if start_hue is not None: cri_type['rg_pars']['start_hue'] = start_hue if scalef is not None: cri_type['rg_pars']['normalized_chroma_ref'] = scalef Rf, Rg, cct, duv, Rfi, jabt, jabr, Rfhi, Rcshi, Rhshi, cri_type = spd_to_cri( SPD, cri_type=cri_type, out=out) rg_pars = cri_type['rg_pars'] #Calculate Metameric uncertainty and base color shifts: dataVF = VF_colorshift_model(SPD, cri_type=cri_type, model_type=vf_model_type, cspace=cri_type['cspace'], sampleset=eval(cri_type['sampleset']), pool=False, pcolorshift=vf_pcolorshift, vfcolor=0) Rf_ = np.array([dataVF[i]['metrics']['Rf'] for i in range(len(dataVF))]).T Rt = np.array([dataVF[i]['metrics']['Rt'] for i in range(len(dataVF))]).T Rti = np.array([dataVF[i]['metrics']['Rti'] for i in range(len(dataVF))][0]) # Get normalized and sliced sample data for plotting: rg_pars = cri_type['rg_pars'] nhbins, normalize_gamut, normalized_chroma_ref, start_hue = [ rg_pars[x] for x in sorted(rg_pars.keys()) ] normalized_chroma_ref = scalef # np.sqrt((jabr[...,1]**2 + jabr[...,2]**2)).mean(axis = 0).mean() if scale_vf_chroma_to_sample_chroma == True: normalize_gamut = False bjabt, bjabr = gamut_slicer( jabt, jabr, out='jabt,jabr', nhbins=nhbins, start_hue=start_hue, normalize_gamut=normalize_gamut, normalized_chroma_ref=normalized_chroma_ref, close_gamut=True) Cr_s = (np.sqrt(bjabr[:-1, ..., 1]**2 + bjabr[:-1, ..., 2]**2)).mean( axis=0) # for rescaling vector field average reference chroma normalize_gamut = True #(for plotting) bjabt, bjabr = gamut_slicer(jabt, jabr, out='jabt,jabr', nhbins=nhbins, start_hue=start_hue, normalize_gamut=normalize_gamut, normalized_chroma_ref=normalized_chroma_ref, close_gamut=True) Rfhi_vf = np.empty(Rfhi.shape) Rcshi_vf = np.empty(Rcshi.shape) Rhshi_vf = np.empty(Rhshi.shape) for i in range(cct.shape[0]): # Get normalized and sliced VF data for hue specific metrics: vfjabt = np.hstack( (np.ones(dataVF[i]['fielddata']['vectorfield']['axt'].shape), dataVF[i]['fielddata']['vectorfield']['axt'], dataVF[i]['fielddata']['vectorfield']['bxt'])) vfjabr = np.hstack( (np.ones(dataVF[i]['fielddata']['vectorfield']['axr'].shape), dataVF[i]['fielddata']['vectorfield']['axr'], dataVF[i]['fielddata']['vectorfield']['bxr'])) nhbins, normalize_gamut, normalized_chroma_ref, start_hue = [ rg_pars[x] for x in sorted(rg_pars.keys()) ] vfbjabt, vfbjabr, vfbDEi = gamut_slicer( vfjabt, vfjabr, out='jabt,jabr,DEi', nhbins=nhbins, start_hue=start_hue, normalize_gamut=normalize_gamut, normalized_chroma_ref=normalized_chroma_ref, close_gamut=False) if scale_vf_chroma_to_sample_chroma == True: #rescale vfbjabt and vfbjabr to same chroma level as bjabr. Cr_vfb = np.sqrt(vfbjabr[..., 1]**2 + vfbjabr[..., 2]**2) Cr_vf = np.sqrt(vfjabr[..., 1]**2 + vfjabr[..., 2]**2) hr_vf = np.arctan2(vfjabr[..., 2], vfjabr[..., 1]) Ct_vf = np.sqrt(vfjabt[..., 1]**2 + vfjabt[..., 2]**2) ht_vf = np.arctan2(vfjabt[..., 2], vfjabt[..., 1]) fC = Cr_s.mean() / Cr_vfb.mean() vfjabr[..., 1] = fC * Cr_vf * np.cos(hr_vf) vfjabr[..., 2] = fC * Cr_vf * np.sin(hr_vf) vfjabt[..., 1] = fC * Ct_vf * np.cos(ht_vf) vfjabt[..., 2] = fC * Ct_vf * np.sin(ht_vf) vfbjabt, vfbjabr, vfbDEi = gamut_slicer( vfjabt, vfjabr, out='jabt,jabr,DEi', nhbins=nhbins, start_hue=start_hue, normalize_gamut=normalize_gamut, normalized_chroma_ref=normalized_chroma_ref, close_gamut=False) scale_factor = cri_type['scale']['cfactor'] scale_fcn = cri_type['scale']['fcn'] vfRfhi, vfRcshi, vfRhshi = jab_to_rhi( jabt=vfbjabt, jabr=vfbjabr, DEi=vfbDEi, cri_type=cri_type, scale_factor=scale_factor, scale_fcn=scale_fcn, use_bin_avg_DEi=True ) # [:-1,...] removes last row from jab as this was added to close the gamut. Rfhi_vf[:, i:i + 1] = vfRfhi Rhshi_vf[:, i:i + 1] = vfRhshi Rcshi_vf[:, i:i + 1] = vfRcshi # Create dict with CRI info: data = {'SPD' : SPD, 'cct' : cct, 'duv' : duv, 'bjabt' : bjabt, 'bjabr' : bjabr,\ 'Rf' : Rf, 'Rg' : Rg, 'Rfi': Rfi, 'Rfhi' : Rfhi, 'Rchhi' : Rcshi, 'Rhshi' : Rhshi, \ 'Rt' : Rt, 'Rti' : Rti, 'Rfhi_vf' : Rfhi_vf, 'Rfcshi_vf' : Rcshi_vf, 'Rfhshi_vf' : Rhshi_vf, \ 'dataVF' : dataVF,'cri_type' : cri_type} return data
def DE2000(xyzt, xyzr, dtype = 'xyz', DEtype = 'jab', avg = None, avg_axis = 0, out = 'DEi', xyzwt = None, xyzwr = None, KLCH = None): """ Calculate DE2000 color difference. Args: :xyzt: | ndarray with tristimulus values of test data. :xyzr: | ndarray with tristimulus values of reference data. :dtype: | 'xyz' or 'lab', optional | Specifies data type in :xyzt: and :xyzr:. :xyzwt: | None or ndarray, optional | White point tristimulus values of test data | None defaults to the one set in lx.xyz_to_lab() :xyzwr: | None or ndarray, optional | Whitepoint tristimulus values of reference data | None defaults to the one set in lx.xyz_to_lab() :DEtype: | 'jab' or str, optional | Options: | - 'jab' : calculates full color difference over all 3 dimensions. | - 'ab' : calculates chromaticity difference. | - 'j' : calculates lightness or brightness difference | (depending on :outin:). | - 'j,ab': calculates both 'j' and 'ab' options and returns them as a tuple. :KLCH: | None, optional | Weigths for L, C, H | None: default to [1,1,1] :avg: | None, optional | None: don't calculate average DE, | otherwise use function handle in :avg:. :avg_axis: | axis to calculate average over, optional :out: | 'DEi' or str, optional | Requested output. Note: For the other input arguments, see specific color space used. Returns: :returns: | ndarray with DEi [, DEa] or other as specified by :out: References: 1. `Sharma, G., Wu, W., & Dalal, E. N. (2005). The CIEDE2000 color‐difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application, 30(1), 21–30. <https://doi.org/10.1002/col.20070>`_ """ if KLCH is None: KLCH = [1,1,1] if dtype == 'xyz': labt = xyz_to_lab(xyzt, xyzw = xyzwt) labr = xyz_to_lab(xyzr, xyzw = xyzwr) else: labt = xyzt labr = xyzr Lt = labt[...,0:1] at = labt[...,1:2] bt = labt[...,2:3] Ct = np.sqrt(at**2 + bt**2) #ht = cam.hue_angle(at,bt,htype = 'rad') Lr = labr[...,0:1] ar = labr[...,1:2] br = labr[...,2:3] Cr = np.sqrt(ar**2 + br**2) #hr = cam.hue_angle(at,bt,htype = 'rad') # Step 1: Cavg = (Ct + Cr)/2 G = 0.5*(1 - np.sqrt((Cavg**7.0)/((Cavg**7.0) + (25.0**7)))) apt = (1 + G)*at apr = (1 + G)*ar Cpt = np.sqrt(apt**2 + bt**2) Cpr = np.sqrt(apr**2 + br**2) Cpprod = Cpt*Cpr hpt = cam.hue_angle(apt,bt, htype = 'deg') hpr = cam.hue_angle(apr,br, htype = 'deg') hpt[(apt==0)*(bt==0)] = 0 hpr[(apr==0)*(br==0)] = 0 # Step 2: dL = np.abs(Lr - Lt) dCp = np.abs(Cpr - Cpt) dhp_ = hpr - hpt dhp = dhp_.copy() dhp[np.where(np.abs(dhp_) > 180)] = dhp[np.where(np.abs(dhp_) > 180)] - 360 dhp[np.where(np.abs(dhp_) < -180)] = dhp[np.where(np.abs(dhp_) < -180)] + 360 dhp[np.where(Cpprod == 0)] = 0 #dH = 2*np.sqrt(Cpprod)*np.sin(dhp/2*np.pi/180) dH = deltaH(dhp, Cpprod, htype = 'deg') # Step 3: Lp = (Lr + Lt)/2 Cp = (Cpr + Cpt)/2 hps = hpt + hpr hp = (hpt + hpr)/2 hp[np.where((np.abs(dhp_) > 180) & (hps < 360))] = hp[np.where((np.abs(dhp_) > 180) & (hps < 360))] + 180 hp[np.where((np.abs(dhp_) > 180) & (hps >= 360))] = hp[np.where((np.abs(dhp_) > 180) & (hps >= 360))] - 180 hp[np.where(Cpprod == 0)] = 0 T = 1 - 0.17*np.cos((hp - 30)*np.pi/180) + 0.24*np.cos(2*hp*np.pi/180) +\ 0.32*np.cos((3*hp + 6)*np.pi/180) - 0.20*np.cos((4*hp - 63)*np.pi/180) dtheta = 30*np.exp(-((hp-275)/25)**2) RC = 2*np.sqrt((Cp**7)/((Cp**7) + (25**7))) SL = 1 + ((0.015*(Lp-50)**2)/np.sqrt(20 + (Lp - 50)**2)) SC = 1 + 0.045*Cp SH = 1 + 0.015*Cp*T RT = -np.sin(2*dtheta*np.pi/180)*RC kL, kC, kH = KLCH DEi = ((dL/(kL*SL))**2 , (dCp/(kC*SC))**2 + (dH/(kH*SH))**2 + RT*(dCp/(kC*SC))*(dH/(kH*SH))) return _process_DEi(DEi, DEtype = DEtype, avg = avg, avg_axis = avg_axis, out = out)
def plotellipse(v, cspace_in = 'Yxy', cspace_out = None, nsamples = 100, \ show = True, axh = None, \ line_color = 'darkgray', line_style = ':', line_width = 1, line_marker = '', line_markersize = 4,\ plot_center = False, center_marker = 'o', center_color = 'darkgray', center_markersize = 4,\ show_grid = True, label_fontname = 'Times New Roman', label_fontsize = 12,\ out = None): """ Plot ellipse(s) given in v-format [Rmax,Rmin,xc,yc,theta]. Args: :v: | (Nx5) ndarray | ellipse parameters [Rmax,Rmin,xc,yc,theta] :cspace_in: | 'Yxy', optional | Color space of v. | If None: no color space assumed. Axis labels assumed ('x','y'). :cspace_out: | None, optional | Color space to plot ellipse(s) in. | If None: plot in cspace_in. :nsamples: | 100 or int, optional | Number of points (samples) in ellipse boundary :show: | True or boolean, optional | Plot ellipse(s) (True) or not (False) :axh: | None, optional | Ax-handle to plot ellipse(s) in. | If None: create new figure with axes. :line_color: | 'darkgray', optional | Color to plot ellipse(s) in. :line_style: | ':', optional | Linestyle of ellipse(s). :line_width': | 1, optional | Width of ellipse boundary line. :line_marker: | 'none', optional | Marker for ellipse boundary. :line_markersize: | 4, optional | Size of markers in ellipse boundary. :plot_center: | False, optional | Plot center of ellipse: yes (True) or no (False) :center_color: | 'darkgray', optional | Color to plot ellipse center in. :center_marker: | 'o', optional | Marker for ellipse center. :center_markersize: | 4, optional | Size of marker of ellipse center. :show_grid: | True, optional | Show grid (True) or not (False) :label_fontname: | 'Times New Roman', optional | Sets font type of axis labels. :label_fontsize: | 12, optional | Sets font size of axis labels. :out: | None, optional | Output of function | If None: returns None. Can be used to output axh of newly created | figure axes or to return Yxys an ndarray with coordinates of | ellipse boundaries in cspace_out (shape = (nsamples,3,N)) Returns: :returns: None, or whatever set by :out:. """ Yxys = np.zeros((nsamples,3,v.shape[0])) ellipse_vs = np.zeros((v.shape[0],5)) for i,vi in enumerate(v): # Set sample density of ellipse boundary: t = np.linspace(0, 2*np.pi, nsamples) a = vi[0] # major axis b = vi[1] # minor axis xyc = vi[2:4,None] # center theta = vi[-1] # rotation angle # define rotation matrix: R = np.hstack(( np.vstack((np.cos(theta), np.sin(theta))), np.vstack((-np.sin(theta), np.cos(theta))))) # Calculate ellipses: Yxyc = np.vstack((1, xyc)).T Yxy = np.vstack((np.ones((1,nsamples)), xyc + np.dot(R, np.vstack((a*np.cos(t), b*np.sin(t))) ))).T Yxys[:,:,i] = Yxy # Convert to requested color space: if (cspace_out is not None) & (cspace_in is not None): Yxy = colortf(Yxy, cspace_in + '>' + cspace_out) Yxyc = colortf(Yxyc, cspace_in + '>' + cspace_out) Yxys[:,:,i] = Yxy # get ellipse parameters in requested color space: ellipse_vs[i,:] = math.fit_ellipse(Yxy[:,1:]) #de = np.sqrt((Yxy[:,1]-Yxyc[:,1])**2 + (Yxy[:,2]-Yxyc[:,2])**2) #ellipse_vs[i,:] = np.hstack((de.max(),de.min(),Yxyc[:,1],Yxyc[:,2],np.nan)) # nan because orientation is xy, but request is some other color space. Change later to actual angle when fitellipse() has been implemented # plot ellipses: if show == True: if (axh is None) & (i == 0): fig = plt.figure() axh = fig.add_subplot(111) if (cspace_in is None): xlabel = 'x' ylabel = 'y' else: xlabel = _CSPACE_AXES[cspace_in][1] ylabel = _CSPACE_AXES[cspace_in][2] if (cspace_out is not None): xlabel = _CSPACE_AXES[cspace_out][1] ylabel = _CSPACE_AXES[cspace_out][2] if plot_center == True: plt.plot(Yxyc[:,1],Yxyc[:,2],color = center_color, linestyle = 'none', marker = center_marker, markersize = center_markersize) plt.plot(Yxy[:,1],Yxy[:,2],color = line_color, linestyle = line_style, linewidth = line_width, marker = line_marker, markersize = line_markersize) plt.xlabel(xlabel, fontname = label_fontname, fontsize = label_fontsize) plt.ylabel(ylabel, fontname = label_fontname, fontsize = label_fontsize) if show_grid == True: plt.grid() #plt.show() Yxys = np.transpose(Yxys,axes=(0,2,1)) if out is not None: return eval(out) else: return None
def rotate(v, vecA=None, vecB=None, rot_axis=None, rot_angle=None, deg=True, norm=False): """ Rotate vector around rotation axis over angle. Args: :v: | vec3 vector. :rot_axis: | None, optional | vec3 vector specifying rotation axis. :rot_angle: | None, optional | float or int rotation angle. :deg: | True, optional | If False, rot_angle is in radians. :vecA:, :vecB: | None, optional | vec3 vectors defining a normal direction (cross(vecA, vecB)) around | which to rotate the vector in :v:. If rot_angle is None: rotation | angle is defined by the in-plane angle between vecA and vecB. :norm: | False, optional | Normalize rotated vector. """ if (vecA is not None) & (vecB is not None): rot_axis = cross(vecA, vecB) # rotation axis if rot_angle is None: costheta = dot(vecA, vecB, norm=True) # rotation angle costheta[costheta > 1] = 1 costheta[costheta < -1] = -1 rot_angle = np.arccos(costheta) elif (rot_angle is not None): if deg == True: rot_angle = np.deg2rad(rot_angle) else: raise Exception('vec3.rotate: insufficient not-None input args.') # normalize rot_axis rot_axis = rot_axis / rot_axis.norm() # Create short-hand variables: u = rot_axis cost = np.cos(rot_angle) sint = np.sin(rot_angle) # Setup rotation matrix: R = np.asarray([[np.zeros(u.x.shape) for j in range(3)] for i in range(3)]) R[0, 0] = cost + u.x * u.x * (1 - cost) R[0, 1] = u.x * u.y * (1 - cost) - u.z * sint R[0, 2] = u.x * u.z * (1 - cost) + u.y * sint R[1, 0] = u.x * u.y * (1 - cost) + u.z * sint R[1, 1] = cost + u.y * u.y * (1 - cost) R[1, 2] = u.y * u.z * (1 - cost) - u.x * sint R[2, 0] = u.z * u.x * (1 - cost) - u.y * sint R[2, 1] = u.z * u.y * (1 - cost) + u.x * sint R[2, 2] = cost + u.z * u.z * (1 - cost) # calculate dot product of matrix M with vector v: v3 = vec3(R[0,0]*v.x + R[0,1]*v.y + R[0,2]*v.z, \ R[1,0]*v.x + R[1,1]*v.y + R[1,2]*v.z, \ R[2,0]*v.x + R[2,1]*v.y + R[2,2]*v.z) if norm == True: v3 = v3 / v3.norm() return v3
def cam15u(data, fov=10.0, inputtype='xyz', direction='forward', outin='Q,aW,bW', parameters=None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM15u color appearance correlates. Args: :data: | ndarray of CIE 2006 10° XYZ tristimulus values or spectral data or color appearance attributes :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam15u | -'inverse': cam15u -> xyz :outin: | 'Q,aW,bW' or str, optional | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral) | other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM15U_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') References: 1. `M. Withouck, K. A. G. Smet, W. R. Ryckaert, and P. Hanselaer, “Experimental driven modelling of the color appearance of unrelated self-luminous stimuli: CAM15u,” Opt. Express, vol. 23, no. 9, pp. 12045–12064, 2015. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-9-12045&origin=search>`_ 2. `M. Withouck, K. A. G. Smet, and P. Hanselaer, (2015), “Brightness prediction of different sized unrelated self-luminous stimuli,” Opt. Express, vol. 23, no. 10, pp. 13455–13466. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-10-13455&origin=search>`_ """ if parameters is None: parameters = _CAM15U_PARAMETERS outin = outin.split(',') #unpack model parameters: Mxyz2rgb, cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cp, k, unique_hue_data = [ parameters[x] for x in sorted(parameters.keys()) ] # precomputations: invMxyz2rgb = np.linalg.inv(Mxyz2rgb) MAab = np.array([cAlms, calms, cblms]) invMAab = np.linalg.inv(MAab) #initialize data and camout: data = np2d(data) if len(data.shape) == 2: data = np.expand_dims(data, axis=0) # avoid looping if not necessary if (data.shape[0] > data.shape[1]): # loop over shortest dim. flipaxis0and1 = True data = np.transpose(data, axes=(1, 0, 2)) else: flipaxis0and1 = False dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[ -2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.nan * np.ones(dshape) for i in range(data.shape[0]): if (inputtype != 'xyz') & (direction == 'forward'): xyz = spd_to_xyz(data[i], cieobs='2006_10', relative=False) lms = np.dot(_CMF['2006_10']['M'], xyz.T).T # convert to l,m,s rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta elif (inputtype == 'xyz') & (direction == 'forward'): rgb = np.dot(Mxyz2rgb, data[i].T).T if direction == 'forward': # apply cube-root compression: rgbc = rgb**(cp) # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A, a, b = asplit(Aab) A = cA * A a = ca * a b = cb * b # calculate colorfullness like signal M: M = cM * ((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = A + cHK[0] * M**cHK[ 1] # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q # calculate amount of white, W: W = 100.0 / (1.0 + cW[0] * (s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q * (fov / 10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a, b, htype='deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data=unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M * np.cos(h * np.pi / 180.0) bM = M * np.sin(h * np.pi / 180.0) if 'aS' in outin: aS = s * np.cos(h * np.pi / 180.0) bS = s * np.sin(h * np.pi / 180.0) if 'aW' in outin: aW = W * np.cos(h * np.pi / 180.0) bW = W * np.sin(h * np.pi / 180.0) if (outin != ['Q', 'aW', 'bW']): camout[i] = eval('ajoin((' + ','.join(outin) + '))') else: camout[i] = ajoin((Q, aW, bW)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((100 / W) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q if 'aM' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s * Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((100.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q elif 's' in outin: M = WsM * Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q - cHK[0] * M**cHK[1] A = A / cA # calculate hue angle: h = hue_angle(a, b, htype='rad') # calculate a,b from M and h: a = (M / cM) * np.cos(h) b = (M / cM) * np.sin(h) a = a / ca b = b / cb # create Aab: Aab = ajoin((A, a, b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to rgb: rgb = rgbc**(1 / cp) # convert rgb to xyz: xyz = np.dot(invMxyz2rgb, rgb.T).T camout[i] = xyz if flipaxis0and1 == True: # loop over shortest dim. camout = np.transpose(camout, axes=(1, 0, 2)) if camout.shape[0] == 1: camout = np.squeeze(camout, axis=0) return camout
def plot_hue_bins(hbins = 16, start_hue = 0.0, scalef = 100, \ plot_axis_labels = False, bin_labels = '#', plot_edge_lines = True, \ plot_center_lines = False, plot_bin_colors = True, \ axtype = 'polar', ax = None, force_CVG_layout = False): """ Makes basis plot for Color Vector Graphic (CVG). Args: :hbins: | 16 or ndarray with sorted hue bin centers (°), optional :start_hue: | 0.0, optional :scalef: | 100, optional | Scale factor for graphic. :plot_axis_labels: | False, optional | Turns axis ticks on/off (True/False). :bin_labels: | None or list[str] or '#', optional | Plots labels at the bin center hues. | - None: don't plot. | - list[str]: list with str for each bin. | (len(:bin_labels:) = :nhbins:) | - '#': plots number. :plot_edge_lines: | True or False, optional | Plot grey bin edge lines with '--'. :plot_center_lines: | False or True, optional | Plot colored lines at 'center' of hue bin. :plot_bin_colors: | True, optional | Colorize hue bins. :axtype: | 'polar' or 'cart', optional | Make polar or Cartesian plot. :ax: | None or 'new' or 'same', optional | - None or 'new' creates new plot | - 'same': continue plot on same axes. | - axes handle: plot on specified axes. :force_CVG_layout: | False or True, optional | True: Force plot of basis of CVG on first encounter. Returns: :returns: | gcf(), gca(), list with rgb colors for hue bins (for use in other plotting fcns) """ # Setup hbincenters and hsv_hues: if isinstance(hbins, float) | isinstance(hbins, int): nhbins = hbins dhbins = 360 / (nhbins) # hue bin width hbincenters = np.arange(start_hue + dhbins / 2, 360, dhbins) hbincenters = np.sort(hbincenters) else: hbincenters = hbins idx = np.argsort(hbincenters) if isinstance(bin_labels, list) | isinstance(bin_labels, np.ndarray): bin_labels = bin_labels[idx] hbincenters = hbincenters[idx] nhbins = hbincenters.shape[0] hbincenters = hbincenters * np.pi / 180 # Setup hbin labels: if bin_labels is '#': bin_labels = ['#{:1.0f}'.format(i + 1) for i in range(nhbins)] # initializing the figure cmap = None if (ax == None) or (ax == 'new'): fig = plt.figure() newfig = True else: newfig = False rect = [0.1, 0.1, 0.8, 0.8] # setting the axis limits in [left, bottom, width, height] if axtype == 'polar': # the polar axis: if newfig == True: ax = fig.add_axes(rect, polar=True, frameon=False) else: #cartesian axis: if newfig == True: ax = fig.add_axes(rect) if (newfig == True) | (force_CVG_layout == True): # Calculate hue-bin boundaries: r = np.vstack( (np.zeros(hbincenters.shape), scalef * np.ones(hbincenters.shape))) theta = np.vstack((np.zeros(hbincenters.shape), hbincenters)) #t = hbincenters.copy() dU = np.roll(hbincenters.copy(), -1) dL = np.roll(hbincenters.copy(), 1) dtU = dU - hbincenters dtL = hbincenters - dL dtU[dtU < 0] = dtU[dtU < 0] + 2 * np.pi dtL[dtL < 0] = dtL[dtL < 0] + 2 * np.pi dL = hbincenters - dtL / 2 dU = hbincenters + dtU / 2 dt = (dU - dL) dM = dL + dt / 2 # Setup color for plotting hue bins: hsv_hues = hbincenters - 30 * np.pi / 180 hsv_hues = hsv_hues / hsv_hues.max() edges = np.vstack( (np.zeros(hbincenters.shape), dL)) # setup hue bin edges array if axtype == 'cart': if plot_center_lines == True: hx = r * np.cos(theta) hy = r * np.sin(theta) if bin_labels is not None: hxv = np.vstack((np.zeros(hbincenters.shape), 1.3 * scalef * np.cos(hbincenters))) hyv = np.vstack((np.zeros(hbincenters.shape), 1.3 * scalef * np.sin(hbincenters))) if plot_edge_lines == True: hxe = np.vstack( (np.zeros(hbincenters.shape), 1.2 * scalef * np.cos(dL))) hye = np.vstack( (np.zeros(hbincenters.shape), 1.2 * scalef * np.sin(dL))) # Plot hue-bins: for i in range(nhbins): # Create color from hue angle: c = np.abs(np.array(colorsys.hsv_to_rgb(hsv_hues[i], 0.84, 0.9))) #c = [abs(c[0]),abs(c[1]),abs(c[2])] # ensure all positive elements if i == 0: cmap = [c] else: cmap.append(c) if axtype == 'polar': if plot_edge_lines == True: ax.plot(edges[:, i], r[:, i] * 1.2, color='grey', marker='None', linestyle=':', linewidth=3, markersize=2) if plot_center_lines == True: if np.mod(i, 2) == 1: ax.plot(theta[:, i], r[:, i], color=c, marker=None, linestyle='--', linewidth=2) else: ax.plot(theta[:, i], r[:, i], color=c, marker='o', linestyle='-', linewidth=3, markersize=10) if plot_bin_colors == True: bar = ax.bar(dM[i], r[1, i], width=dt[i], color=c, alpha=0.15) if bin_labels is not None: ax.text(hbincenters[i], 1.3 * scalef, bin_labels[i], fontsize=12, horizontalalignment='center', verticalalignment='center', color=np.array([1, 1, 1]) * 0.3) if plot_axis_labels == False: ax.set_xticklabels([]) ax.set_yticklabels([]) else: if plot_edge_lines == True: ax.plot(hxe[:, i], hye[:, i], color='grey', marker='None', linestyle=':', linewidth=3, markersize=2) if plot_center_lines == True: if np.mod(i, 2) == 1: ax.plot(hx[:, i], hy[:, i], color=c, marker=None, linestyle='--', linewidth=2) else: ax.plot(hx[:, i], hy[:, i], color=c, marker='o', linestyle='-', linewidth=3, markersize=10) if bin_labels is not None: ax.text(hxv[1, i], hyv[1, i], bin_labels[i], fontsize=12, horizontalalignment='center', verticalalignment='center', color=np.array([1, 1, 1]) * 0.3) ax.axis(1.1 * np.array( [hxv.min(), hxv.max(), hyv.min(), hyv.max()])) if plot_axis_labels == False: ax.set_xticklabels([]) ax.set_yticklabels([]) else: plt.xlabel("a'") plt.ylabel("b'") plt.plot(0, 0, color='k', marker='o', linestyle=None) return plt.gcf(), plt.gca(), cmap
def get_poly_model(jabt, jabr, modeltype = _VF_MODEL_TYPE): """ Setup base color shift model (delta_a, delta_b), determine model parameters and accuracy. | Calculates a base color shift (delta) from the ref. chromaticity ar, br. Args: :jabt: | ndarray with jab color coordinates under the test SPD. :jabr: | ndarray with jab color coordinates under the reference SPD. :modeltype: | _VF_MODEL_TYPE or 'M6' or 'M5', optional | Specifies degree 5 or degree 6 polynomial model in ab-coordinates. (see notes below) Returns: :returns: | (poly_model, | pmodel, | dab_model, | dab_res, | dCHoverC_res, | dab_std, | dCHoverC_std) | | :poly_model: function handle to model | :pmodel: ndarray with model parameters | :dab_model: ndarray with ab model predictions from ar, br. | :dab_res: ndarray with residuals between 'da,db' of samples and | 'da,db' predicted by the model. | :dCHoverC_res: ndarray with residuals between 'dCoverC,dH' | of samples and 'dCoverC,dH' predicted by the model. | Note: dCoverC = (Ct - Cr)/Cr and dH = ht - hr | (predicted from model, see notes below) | :dab_std: ndarray with std of :dab_res: | :dCHoverC_std: ndarray with std of :dCHoverC_res: Notes: 1. Model types: | poly5_model = lambda a,b,p: p[0]*a + p[1]*b + p[2]*(a**2) + p[3]*a*b + p[4]*(b**2) | poly6_model = lambda a,b,p: p[0] + p[1]*a + p[2]*b + p[3]*(a**2) + p[4]*a*b + p[5]*(b**2) 2. Calculation of dCoverC and dH: | dCoverC = (np.cos(hr)*da + np.sin(hr)*db)/Cr | dHoverC = (np.cos(hr)*db - np.sin(hr)*da)/Cr """ at = jabt[...,1] bt = jabt[...,2] ar = jabr[...,1] br = jabr[...,2] # A. Calculate da, db: da = at - ar db = bt - br # B.1 Calculate model matrix: # 5-parameter model: M5 = np.array([[np.sum(ar*ar), np.sum(ar*br), np.sum(ar*ar**2),np.sum(ar*ar*br),np.sum(ar*br**2)], [np.sum(br*ar), np.sum(br*br), np.sum(br*ar**2),np.sum(br*ar*br),np.sum(br*br**2)], [np.sum((ar**2)*ar), np.sum((ar**2)*br), np.sum((ar**2)*ar**2),np.sum((ar**2)*ar*br),np.sum((ar**2)*br**2)], [np.sum(ar*br*ar), np.sum(ar*br*br), np.sum(ar*br*ar**2),np.sum(ar*br*ar*br),np.sum(ar*br*br**2)], [np.sum((br**2)*ar), np.sum((br**2)*br), np.sum((br**2)*ar**2),np.sum((br**2)*ar*br),np.sum((br**2)*br**2)]]) #6-parameters model M6 = np.array([[ar.size,np.sum(1.0*ar), np.sum(1.0*br), np.sum(1.0*ar**2),np.sum(1.0*ar*br),np.sum(1.0*br**2)], [np.sum(ar*1.0),np.sum(ar*ar), np.sum(ar*br), np.sum(ar*ar**2),np.sum(ar*ar*br),np.sum(ar*br**2)], [np.sum(br*1.0),np.sum(br*ar), np.sum(br*br), np.sum(br*ar**2),np.sum(br*ar*br),np.sum(br*br**2)], [np.sum((ar**2)*1.0),np.sum((ar**2)*ar), np.sum((ar**2)*br), np.sum((ar**2)*ar**2),np.sum((ar**2)*ar*br),np.sum((ar**2)*br**2)], [np.sum(ar*br*1.0),np.sum(ar*br*ar), np.sum(ar*br*br), np.sum(ar*br*ar**2),np.sum(ar*br*ar*br),np.sum(ar*br*br**2)], [np.sum((br**2)*1.0),np.sum((br**2)*ar), np.sum((br**2)*br), np.sum((br**2)*ar**2),np.sum((br**2)*ar*br),np.sum((br**2)*br**2)]]) # B.2 Define model function: poly5_model = lambda a,b,p: p[0]*a + p[1]*b + p[2]*(a**2) + p[3]*a*b + p[4]*(b**2) poly6_model = lambda a,b,p: p[0] + p[1]*a + p[2]*b + p[3]*(a**2) + p[4]*a*b + p[5]*(b**2) if modeltype == 'M5': M = M5 poly_model = poly5_model else: M = M6 poly_model = poly6_model M = np.linalg.inv(M) # C.1 Data a,b analysis output: if modeltype == 'M5': da_model_parameters = np.dot(M, np.array([np.sum(da*ar), np.sum(da*br), np.sum(da*ar**2),np.sum(da*ar*br),np.sum(da*br**2)])) db_model_parameters = np.dot(M, np.array([np.sum(db*ar), np.sum(db*br), np.sum(db*ar**2),np.sum(db*ar*br),np.sum(db*br**2)])) else: da_model_parameters = np.dot(M, np.array([np.sum(da*1.0),np.sum(da*ar), np.sum(da*br), np.sum(da*ar**2),np.sum(da*ar*br),np.sum(da*br**2)])) db_model_parameters = np.dot(M, np.array([np.sum(db*1.0),np.sum(db*ar), np.sum(db*br), np.sum(db*ar**2),np.sum(db*ar*br),np.sum(db*br**2)])) pmodel = np.vstack((da_model_parameters,db_model_parameters)) # D.1 Calculate model da, db: da_model = poly_model(ar,br,pmodel[0]) db_model = poly_model(ar,br,pmodel[1]) dab_model = np.hstack((da_model,db_model)) # D.2 Calculate residuals for da & db: da_res = da - da_model db_res = db - db_model dab_res = np.hstack((da_res,db_res)) dab_std = np.vstack((np.std(da_res,axis=0),np.std(db_res,axis=0))) # E Calculate href, Cref: href = np.arctan2(br,ar) Cref = (ar**2 + br**2)**0.5 # F Calculate dC/C, dH/C for data and model and calculate residuals: dCoverC = (np.cos(href)*da + np.sin(href)*db)/Cref dHoverC = (np.cos(href)*db - np.sin(href)*da)/Cref dCoverC_model = (np.cos(href)*da_model + np.sin(href)*db_model)/Cref dHoverC_model = (np.cos(href)*db_model - np.sin(href)*da_model)/Cref dCoverC_res = dCoverC - dCoverC_model dHoverC_res = dHoverC - dHoverC_model dCHoverC_std = np.vstack((np.std(dCoverC_res,axis = 0),np.std(dHoverC_res,axis = 0))) dCHoverC_res = np.hstack((href,dCoverC_res,dHoverC_res)) return poly_model, pmodel, dab_model, dab_res, dCHoverC_res, dab_std, dCHoverC_std
def run(data, xyzw, out = 'J,aM,bM', conditions = None, forward = True): """ Run CIECAM02 color appearance model in forward or backward modes. Args: :data: | ndarray with relative sample xyz values (forward mode) or J'a'b' coordinates (inverse mode) :xyzw: | ndarray with relative white point tristimulus values :conditions: | None, optional | Dictionary with viewing conditions. | None results in: | {'La':100, 'Yb':20, 'D':1, 'surround':'avg'} | For more info see luxpy.cam.ciecam02()? :forward: | True, optional | If True: run in CAM in forward mode, else: inverse mode. :out: | 'J,aM,bM', optional | String with requested output (e.g. "J,aM,bM,M,h") [Forward mode] | String with inputs in data. | Input must have data.shape[-1]==3 and last dim of data must have | the following structure: | * data[...,0] = J or Q, | * data[...,1:] = (aM,bM) or (aC,bC) or (aS,bS) Returns: :camout: | ndarray with Jab coordinates or whatever correlates requested in out. Note: * This is a simplified, less flexible, but faster version than the main ciecam02(). References: 1. `N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, (2002), "The CIECAM02 color appearance model,” IS&T/SID Tenth Color Imaging Conference. p. 23, 2002. <http://rit-mcsl.org/fairchild/PDFs/PRO19.pdf>`_ """ outin = out.split(',') if isinstance(out,str) else out #-------------------------------------------- # Get/ set conditions parameters: if conditions is not None: surround_parameters = {'surrounds': ['avg', 'dim', 'dark'], 'avg' : {'c':0.69, 'Nc':1.0, 'F':1.0,'FLL': 1.0}, 'dim' : {'c':0.59, 'Nc':0.9, 'F':0.9,'FLL':1.0} , 'dark' : {'c':0.525, 'Nc':0.8, 'F':0.8,'FLL':1.0}} La = conditions['La'] Yb = conditions['Yb'] D = conditions['D'] surround = conditions['surround'] if isinstance(surround, str): surround = surround_parameters[conditions['surround']] F, FLL, Nc, c = [surround[x] for x in sorted(surround.keys())] else: # set defaults: La, Yb, D, F, FLL, Nc, c = 100, 20, 1, 1, 1, 1, 0.69 #-------------------------------------------- # Define sensor space and cat matrices: mhpe = np.array([[0.38971,0.68898,-0.07868], [-0.22981,1.1834,0.04641], [0.0,0.0,1.0]]) # Hunt-Pointer-Estevez sensors (cone fundamentals) mcat = np.array([[0.7328, 0.4296, -0.1624], [ -0.7036, 1.6975, 0.0061], [ 0.0030, 0.0136, 0.9834]]) # CAT02 sensor space #-------------------------------------------- # pre-calculate some matrices: invmcat = np.linalg.inv(mcat) mhpe_x_invmcat = np.dot(mhpe,invmcat) if not forward: mcat_x_invmhpe = np.dot(mcat,np.linalg.inv(mhpe)) #-------------------------------------------- # calculate condition dependent parameters: Yw = xyzw[...,1:2].T k = 1.0 / (5.0*La + 1.0) FL = 0.2*(k**4.0)*(5.0*La) + 0.1*((1.0 - k**4.0)**2.0)*((5.0*La)**(1.0/3.0)) # luminance adaptation factor n = Yb/Yw Nbb = 0.725*(1/n)**0.2 Ncb = Nbb z = 1.48 + FLL*n**0.5 if D is None: D = F*(1.0-(1.0/3.6)*np.exp((-La-42.0)/92.0)) #=================================================================== # WHITE POINT transformations (common to forward and inverse modes): #-------------------------------------------- # transform from xyzw to cat sensor space: rgbw = mcat @ xyzw.T #-------------------------------------------- # apply von Kries cat: rgbwc = ((D*Yw/rgbw) + (1 - D))*rgbw # factor 100 from ciecam02 is replaced with Yw[i] in cam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.) #-------------------------------------------- # convert from cat02 sensor space to cone sensors (hpe): rgbwp = (mhpe_x_invmcat @ rgbwc).T #-------------------------------------------- # apply Naka_rushton repsonse compression to white: NK = lambda x, forward: naka_rushton(x, scaling = 400, n = 0.42, sig = 27.13**(1/0.42), noise = 0.1, forward = forward) rgbwpa = NK(FL*rgbwp/100.0, True) pw = np.where(rgbwp<0) rgbwpa[pw] = 0.1 - (NK(FL*np.abs(rgbwp[pw])/100.0, True) - 0.1) #-------------------------------------------- # Calculate achromatic signal of white: Aw = (2.0*rgbwpa[...,0] + rgbwpa[...,1] + (1.0/20.0)*rgbwpa[...,2] - 0.305)*Nbb # massage shape of data for broadcasting: if data.ndim == 2: data = data[:,None] #=================================================================== # STIMULUS transformations if forward: #-------------------------------------------- # transform from xyz to cat sensor space: rgb = math.dot23(mcat, data.T) #-------------------------------------------- # apply von Kries cat: rgbc = ((D*Yw/rgbw)[...,None] + (1 - D))*rgb # factor 100 from ciecam02 is replaced with Yw[i] in cam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.) #-------------------------------------------- # convert from cat02 sensor space to cone sensors (hpe): rgbp = math.dot23(mhpe_x_invmcat,rgbc).T #-------------------------------------------- # apply Naka_rushton repsonse compression: rgbpa = NK(FL*rgbp/100.0, forward) p = np.where(rgbp<0) rgbpa[p] = 0.1 - (NK(FL*np.abs(rgbp[p])/100.0, forward) - 0.1) #-------------------------------------------- # Calculate achromatic signal: A = (2.0*rgbpa[...,0] + rgbpa[...,1] + (1.0/20.0)*rgbpa[...,2] - 0.305)*Nbb #-------------------------------------------- # calculate initial opponent channels: a = rgbpa[...,0] - 12.0*rgbpa[...,1]/11.0 + rgbpa[...,2]/11.0 b = (1.0/9.0)*(rgbpa[...,0] + rgbpa[...,1] - 2.0*rgbpa[...,2]) #-------------------------------------------- # calculate hue h and eccentricity factor, et: h = hue_angle(a,b, htype = 'deg') et = (1.0/4.0)*(np.cos(h*np.pi/180 + 2.0) + 3.8) #-------------------------------------------- # calculate Hue quadrature (if requested in 'out'): if 'H' in outin: H = hue_quadrature(h, unique_hue_data = 'ciecam02') else: H = None #-------------------------------------------- # calculate lightness, J: if ('J' in outin) | ('Q' in outin) | ('C' in outin) | ('M' in outin) | ('s' in outin) | ('aS' in outin) | ('aC' in outin) | ('aM' in outin): J = 100.0* (A / Aw)**(c*z) #-------------------------------------------- # calculate brightness, Q: if ('Q' in outin) | ('s' in outin) | ('aS' in outin): Q = (4.0/c)* ((J/100.0)**0.5) * (Aw + 4.0)*(FL**0.25) #-------------------------------------------- # calculate chroma, C: if ('C' in outin) | ('M' in outin) | ('s' in outin) | ('aS' in outin) | ('aC' in outin) | ('aM' in outin): t = ((50000.0/13.0)*Nc*Ncb*et*((a**2.0 + b**2.0)**0.5)) / (rgbpa[...,0] + rgbpa[...,1] + (21.0/20.0*rgbpa[...,2])) C = (t**0.9)*((J/100.0)**0.5) * (1.64 - 0.29**n)**0.73 #-------------------------------------------- # calculate colorfulness, M: if ('M' in outin) | ('s' in outin) | ('aM' in outin) | ('aS' in outin): M = C*FL**0.25 #-------------------------------------------- # calculate saturation, s: if ('s' in outin) | ('aS' in outin): s = 100.0* (M/Q)**0.5 #-------------------------------------------- # calculate cartesian coordinates: if ('aS' in outin): aS = s*np.cos(h*np.pi/180.0) bS = s*np.sin(h*np.pi/180.0) if ('aC' in outin): aC = C*np.cos(h*np.pi/180.0) bC = C*np.sin(h*np.pi/180.0) if ('aM' in outin): aM = M*np.cos(h*np.pi/180.0) bM = M*np.sin(h*np.pi/180.0) #-------------------------------------------- if outin != ['J','aM','bM']: camout = eval('ajoin(('+','.join(outin)+'))') else: camout = ajoin((J,aM,bM)) if camout.shape[1] == 1: camout = camout[:,0,:] return camout elif forward == False: #-------------------------------------------- # Get Lightness J from data: if ('J' in outin): J = data[...,0].copy() elif ('Q' in outin): Q = data[...,0].copy() J = 100.0*(Q / ((Aw + 4.0)*(FL**0.25)*(4.0/c)))**2.0 else: raise Exception('No lightness or brightness values in data. Inverse CAM-transform not possible!') #-------------------------------------------- # calculate hue h: h = hue_angle(data[...,1],data[...,2], htype = 'deg') #-------------------------------------------- # calculate Colorfulness M or Chroma C or Saturation s from a,b: MCs = (data[...,1]**2.0 + data[...,2]**2.0)**0.5 if ('aS' in outin): Q = (4.0/c)* ((J/100.0)**0.5) * (Aw + 4.0)*(FL**0.25) M = Q*(MCs/100.0)**2.0 C = M/(FL**0.25) if ('aM' in outin): # convert M to C: C = MCs/(FL**0.25) if ('aC' in outin): C = MCs #-------------------------------------------- # calculate t from J, C: t = (C / ((J/100.0)**(1.0/2.0) * (1.64 - 0.29**n)**0.73))**(1.0/0.9) #-------------------------------------------- # calculate eccentricity factor, et: et = (np.cos(h*np.pi/180.0 + 2.0) + 3.8) / 4.0 #-------------------------------------------- # calculate achromatic signal, A: A = Aw*(J/100.0)**(1.0/(c*z)) #-------------------------------------------- # calculate temporary cart. co. at, bt and p1,p2,p3,p4,p5: at = np.cos(h*np.pi/180.0) bt = np.sin(h*np.pi/180.0) p1 = (50000.0/13.0)*Nc*Ncb*et/t p2 = A/Nbb + 0.305 p3 = 21.0/20.0 p4 = p1/bt p5 = p1/at #-------------------------------------------- #q = np.where(np.abs(bt) < np.abs(at))[0] q = (np.abs(bt) < np.abs(at)) b = p2*(2.0 + p3) * (460.0/1403.0) / (p4 + (2.0 + p3) * (220.0/1403.0) * (at/bt) - (27.0/1403.0) + p3*(6300.0/1403.0)) a = b * (at/bt) a[q] = p2[q]*(2.0 + p3) * (460.0/1403.0) / (p5[q] + (2.0 + p3) * (220.0/1403.0) - ((27.0/1403.0) - p3*(6300.0/1403.0)) * (bt[q]/at[q])) b[q] = a[q] * (bt[q]/at[q]) #-------------------------------------------- # calculate post-adaptation values rpa = (460.0*p2 + 451.0*a + 288.0*b) / 1403.0 gpa = (460.0*p2 - 891.0*a - 261.0*b) / 1403.0 bpa = (460.0*p2 - 220.0*a - 6300.0*b) / 1403.0 #-------------------------------------------- # join values: rgbpa = ajoin((rpa,gpa,bpa)) #-------------------------------------------- # decompress signals: rgbp = (100.0/FL)*NK(rgbpa, forward) #-------------------------------------------- # convert from to cone sensors (hpe) cat02 sensor space: rgbc = math.dot23(mcat_x_invmhpe,rgbp.T) #-------------------------------------------- # apply inverse von Kries cat: rgb = rgbc / ((D*Yw/rgbw)[...,None] + (1.0 - D)) #-------------------------------------------- # transform from cat sensor space to xyz: xyz = math.dot23(invmcat,rgb).T return xyz
def cam18sl(data, datab = None, Lb = [100], fov = 10.0, inputtype = 'xyz', direction = 'forward', outin = 'Q,aW,bW', parameters = None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM18sl color appearance correlates. Args: :data: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data or color appearance attributes of stimulus :datab: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data of stimulus background :Lb: | [100], optional | Luminance (cd/m²) value(s) of background(s) calculated using the CIE 2006 10° CMFs | (only used in case datab == None and the background is assumed to be an Equal-Energy-White) :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam18sl | -'inverse': cam18sl -> xyz :outin: | 'Q,aW,bW' or str, optional | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral) | other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM18SL_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | * Instead of using the CIE 1964 10° CMFs in some places of the model, | the CIE 2006 10° CMFs are used througout, making it more self_consistent. | This has an effect on the k scaling factors (now different those in CAM15u) | and the illuminant E normalization for use in the chromatic adaptation transform. | (see future erratum to Hermans et al., 2018) | * The paper also used an equation for the amount of white W, which is | based on a Q value not expressed in 'bright' ('cA' = 0.937 instead of 123). | This has been corrected for in the luxpy version of the model, i.e. | _CAM18SL_PARAMETERS['cW'][0] has been changed from 2.29 to 1/11672. | (see future erratum to Hermans et al., 2018) References: 1. `Hermans, S., Smet, K. A. G., & Hanselaer, P. (2018). "Color appearance model for self-luminous stimuli." Journal of the Optical Society of America A, 35(12), 2000–2009. <https://doi.org/10.1364/JOSAA.35.002000>`_ """ if parameters is None: parameters = _CAM18SL_PARAMETERS outin = outin.split(',') #unpack model parameters: cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, k, naka, unique_hue_data = [parameters[x] for x in sorted(parameters.keys())] # precomputations: Mlms2xyz = np.linalg.inv(_CMF['2006_10']['M']) MAab = np.array([cAlms,calms,cblms]) invMAab = np.linalg.inv(MAab) #------------------------------------------------- # setup EEW reference field and default background field (Lr should be equal to Lb): # Get Lb values: if datab is not None: if inputtype != 'xyz': Lb = spd_to_xyz(datab, cieobs = '2006_10', relative = False)[...,1:2] else: Lb = datab[...,1:2] else: if isinstance(Lb,list): Lb = np2dT(Lb) # Setup EEW ref of same luminance as datab: if inputtype == 'xyz': wlr = getwlr(_CAM18SL_WL3) else: if datab is None: wlr = data[0] # use wlr of stimulus data else: wlr = datab[0] # use wlr of background data datar = np.vstack((wlr,np.ones((Lb.shape[0], wlr.shape[0])))) # create eew xyzr = spd_to_xyz(datar, cieobs = '2006_10', relative = False) # get abs. tristimulus values datar[1:] = datar[1:]/xyzr[...,1:2]*Lb # Create datab if None: if (datab is None): if inputtype != 'xyz': datab = datar.copy() else: datab = spd_to_xyz(datar, cieobs = '2006_10', relative = False) datar = datab.copy() # prepare data and datab for loop over backgrounds: # make axis 1 of datab have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis = 1) # add light source axis 1 if inputtype == 'xyz': if datab.shape[0] == 1: #make datab and datar have same lights source dimension (used to store different backgrounds) size as data datab = np.repeat(datab,data.shape[1],axis=0) datar = np.repeat(datar,data.shape[1],axis=0) else: if datab.shape[0] == 2: datab = np.vstack((datab[0],np.repeat(datab[1:], data.shape[1], axis = 0))) if datar.shape[0] == 2: datar = np.vstack((datar[0],np.repeat(datar[1:], data.shape[1], axis = 0))) # Flip light source/ background dim to axis 0: data = np.transpose(data, axes = (1,0,2)) #------------------------------------------------- #initialize camout: dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.nan*np.ones(dshape) for i in range(data.shape[0]): # get rho, gamma, beta of background and reference white: if (inputtype != 'xyz'): xyzb = spd_to_xyz(np.vstack((datab[0], datab[i+1:i+2,:])), cieobs = '2006_10', relative = False) xyzr = spd_to_xyz(np.vstack((datar[0], datar[i+1:i+2,:])), cieobs = '2006_10', relative = False) else: xyzb = datab[i:i+1,:] xyzr = datar[i:i+1,:] lmsb = np.dot(_CMF['2006_10']['M'],xyzb.T).T # convert to l,m,s rgbb = (lmsb / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta #lmsr = np.dot(_CMF['2006_10']['M'],xyzr.T).T # convert to l,m,s #rgbr = (lmsr / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta #rgbr = rgbr/rgbr[...,1:2]*Lb[i] # calculated EEW cone excitations at same luminance values as background rgbr = np.ones(xyzr.shape)*Lb[i] # explicitely equal EEW cone excitations at same luminance values as background if direction == 'forward': # get rho, gamma, beta of stimulus: if (inputtype != 'xyz'): xyz = spd_to_xyz(data[i], cieobs = '2006_10', relative = False) elif (inputtype == 'xyz'): xyz = data[i] lms = np.dot(_CMF['2006_10']['M'],xyz.T).T # convert to l,m,s rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta # apply von-kries cat with D = 1: if (rgbb == 0).any(): Mcat = np.eye(3) else: Mcat = np.diag((rgbr/rgbb)[0]) rgba = np.dot(Mcat,rgb.T).T # apply naka-rushton compression: rgbc = naka_rushton(rgba, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling']) #rgbc = np.ones(rgbc.shape)*rgbc.mean() # test if eew ends up at origin # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A,a,b = asplit(Aab) a = ca*a b = cb*b # calculate colorfullness like signal M: M = cM*((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = cA*(A + cHK[0]*M**cHK[1]) # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q # calculate amount of white, W: W = 1 / (1.0 + cW[0]*(s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q*(fov/10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a,b, htype = 'deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data = unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M*np.cos(h*np.pi/180.0) bM = M*np.sin(h*np.pi/180.0) if 'aS' in outin: aS = s*np.cos(h*np.pi/180.0) bS = s*np.sin(h*np.pi/180.0) if 'aW' in outin: aW = W*np.cos(h*np.pi/180.0) bW = W*np.sin(h*np.pi/180.0) if (outin != ['Q','aW','bW']): camout[i] = eval('ajoin(('+','.join(outin)+'))') else: camout[i] = ajoin((Q,aW,bW)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((1.0 / W) - 1.0)/cW[0])**(1.0/cW[1]) M = s*Q if 'aM' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s*Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((1.0 / WsM) - 1.0)/cW[0])**(1.0/cW[1]) M = s*Q elif 's' in outin: M = WsM*Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q/cA - cHK[0]*M**cHK[1] # calculate hue angle: h = hue_angle(a,b, htype = 'rad') # calculate a,b from M and h: a = (M/cM)*np.cos(h) b = (M/cM)*np.sin(h) a = a/ca b = b/cb # create Aab: Aab = ajoin((A,a,b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to (adapted) rgba : rgba = naka_rushton(rgbc, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling'], direction = 'inverse') # apply inverse von-kries cat with D = 1: rgb = np.dot(np.diag((rgbb/rgbr)[0]),rgba.T).T # convert rgb to lms to xyz: lms = rgb/k*_CMF['2006_10']['K'] xyz = np.dot(Mlms2xyz,lms.T).T camout[i] = xyz if camout.shape[0] == 1: camout = np.squeeze(camout,axis = 0) return camout
DE_hj[j, ...] = np.nansum( (DEi * cndr_hj[..., None]) / wr.T, axis=0).T # local color difference is average of DEi per hue bin !! # calculate normalized hue-bin averages for jabt, jabr: ht_hj = cam.hue_angle(jabt_hj[..., 1], jabt_hj[..., 2], htype='rad') hr_hj = cam.hue_angle(jabr_hj[..., 1], jabr_hj[..., 2], htype='rad') Ct_hj = ((jabt_hj[..., 1]**2 + jabt_hj[..., 2]**2))**0.5 Cr_hj = ((jabr_hj[..., 1]**2 + jabr_hj[..., 2]**2))**0.5 Ctn_hj = normalized_chroma_ref * Ct_hj / ( Cr_hj + 1e-308) # calculate normalized chroma for samples under test Ctn_hj[Cr_hj == 0.0] = np.inf jabtn_hj = jabt_hj.copy() jabrn_hj = jabr_hj.copy() jabtn_hj[..., 1], jabtn_hj[..., 2] = Ctn_hj * np.cos(ht_hj), Ctn_hj * np.sin(ht_hj) jabrn_hj[..., 1], jabrn_hj[..., 2] = normalized_chroma_ref * np.cos( hr_hj), normalized_chroma_ref * np.sin(hr_hj) # calculate normalized versions of jabt, jabr: jabtn = jabt.copy() jabrn = jabr.copy() Ctn = np.zeros((jabt.shape[0], jabt.shape[1])) Crn = Ctn.copy() for j in range(nhbins): Ctn = Ctn + (Ct / Cr_hj[j, ...]) * (hr_idx == j) Crn = Crn + (Cr / Cr_hj[j, ...]) * (hr_idx == j) Ctn *= normalized_chroma_ref Crn *= normalized_chroma_ref jabtn[..., 1] = (Ctn * np.cos(ht)) jabtn[..., 2] = (Ctn * np.sin(ht))