Exemple #1
0
class SiemensSliceOrder(BaseInterface):

    input_spec = SingleInFile
    output_spec = SingleOutFile

    def _run_interface(self, runtime):

        fname = self.inputs.in_file

        # Determine number of slices
        # Assumes slice selection is on z axis. Usually true -- but always?
        n_slices = nib.load(fname).shape[2]
        slices = np.arange(1, n_slices + 1)
        if n_slices % 2:
            # Odd slice number starts with odd slices
            slice_order = np.r_[slices[::2], slices[1::2]]
        else:
            # Even slice number starts with even slices
            slice_order = np.r_[slices[1::2], slices[::2]]

        np.savetxt("slice_order.txt", slice_order, fmt="%d")

        return runtime

    _list_outputs = list_out_file("slice_order.txt")
Exemple #2
0
class ExtractRealignmentTarget(BaseInterface):

    input_spec = SingleInFile
    output_spec = SingleOutFile

    def _run_interface(self, runtime):

        # Load the input timeseries
        img = nib.load(self.inputs.in_file)

        # Extract the target volume
        targ = self.extract_target(img)

        # Save a new 3D image
        targ_img = nib.Nifti1Image(targ, img.get_affine(), img.get_header())
        targ_img.to_filename("example_func.nii.gz")

        return runtime

    def extract_target(self, img):
        """Return a 3D array with data from the middle TR."""
        middle_vol = img.shape[-1] // 2
        targ = np.empty(img.shape[:-1])
        targ[:] = img.dataobj[..., middle_vol]

        return targ

    _list_outputs = list_out_file("example_func.nii.gz")
Exemple #3
0
class PrepTimeseries(BaseInterface):

    input_spec = PrepTimeseriesInput
    output_spec = SingleOutFile

    def _run_interface(self, runtime):

        # Load the input timeseries
        img = nib.load(self.inputs.in_file)
        data = img.get_data()
        aff = img.get_affine()
        hdr = img.get_header()

        # Trim off the equilibrium TRs
        data = self.trim_timeseries(data)

        # Save the output timeseries as float32
        hdr.set_data_dtype(np.float32)
        new_img = nib.Nifti1Image(data, aff, hdr)
        new_img.to_filename("timeseries.nii.gz")

        return runtime

    def trim_timeseries(self, data):
        """Remove frames from beginning of timeseries."""
        return data[..., self.inputs.frames_to_toss:]

    _list_outputs = list_out_file("timeseries.nii.gz")
Exemple #4
0
class ScaleTimeseries(BaseInterface):

    input_spec = ScaleTimeseriesInput
    output_spec = SingleOutFile

    def _run_interface(self, runtime):

        ts_img = nib.load(self.inputs.in_file)
        ts_data = ts_img.get_data()
        mask = nib.load(self.inputs.mask_file).get_data().astype(bool)

        # Flexibly get the statistic value.
        # This has to be stringly-typed because nipype
        # can't pass around functions
        stat_func = getattr(np, self.inputs.statistic)

        # Do the scaling
        scaled_ts = self.scale_timeseries(stat_func, ts_data, mask,
                                          self.inputs.target)

        # Save the resulting image
        scaled_img = nib.Nifti1Image(scaled_ts, ts_img.get_affine(),
                                     ts_img.get_header())
        scaled_img.to_filename("timeseries_scaled.nii.gz")

        return runtime

    def scale_timeseries(self, stat_func, data, mask, target):
        """Make scale timeseries across four dimensions to a target."""
        stat_value = stat_func(data[mask])
        scale_value = target / stat_value
        scaled_data = data * scale_value
        return scaled_data

    _list_outputs = list_out_file("timeseries_scaled.nii.gz")
Exemple #5
0
class UnwarpReport(BaseInterface):

    input_spec = UnwarpReportInput
    output_spec = SingleOutFile

    def _run_interface(self, runtime):

        # Make a discrete colormap
        cmap = mpl.colors.ListedColormap(["black", "#d65f5f", "white"])

        # Initialize the figure
        f, axes = plt.subplots(1,
                               2,
                               figsize=(9, 2.75),
                               facecolor="black",
                               edgecolor="black")

        for ax, fname in zip(
                axes, [self.inputs.orig_file, self.inputs.corrected_file]):

            # Combine the frames from this image and plot
            img = nib.load(fname)
            ax.imshow(self.combine_frames(img), cmap=cmap, vmin=0, vmax=2)
            ax.set_axis_off()

        # Save the figure and close
        f.subplots_adjust(0, 0, 1, 1, 0, 0)
        f.savefig("unwarping.png", facecolor="black", edgecolor="black")
        plt.close(f)

        return runtime

    def combine_frames(self, img):

        # Find a value to loosely segment the brain
        d = img.get_data()
        counts, bins = np.histogram(d[d > 0], 50)
        thresh = bins[np.diff(counts) > 0][0]

        # Show the middle slice
        middle = d.shape[0] // 2

        # Combine a binary mask for each phase direction
        a = np.rot90(d[middle, ..., 0] > thresh)
        b = np.rot90(d[middle, ..., 1] > thresh)

        # Make an image showing overlap and divergence
        c = np.zeros_like(a, int)
        c[a ^ b] = 1
        c[a & b] = 2

        return c

    _list_outputs = list_out_file("unwarping.png")
Exemple #6
0
class CoregReport(BaseInterface):

    input_spec = CoregReportInput
    output_spec = SingleOutFile

    def _run_interface(self, runtime):

        subjects_dir = os.environ["SUBJECTS_DIR"]
        wm_file = op.join(subjects_dir, self.inputs.subject_id, "mri/wm.mgz")
        wm_data = nib.load(wm_file).get_data().astype(bool).astype(int)

        m = Mosaic(self.inputs.in_file, wm_data, step=3)
        m.plot_contours(["#DD2222"])
        m.savefig("func2anat.png")
        m.close()

        return runtime

    _list_outputs = list_out_file("func2anat.png")
Exemple #7
0
class ExtractConfounds(BaseInterface):
    """Extract nuisance variables from anatomical sources."""
    input_spec = ExtractConfoundsInput
    output_spec = SingleOutFile

    def _run_interface(self, runtime):

        # Load the brain images
        ts_data = nib.load(self.inputs.timeseries).get_data()
        wm_mask = nib.load(self.inputs.wm_mask).get_data()
        brain_mask = nib.load(self.inputs.brain_mask).get_data()

        # Set up the output dataframe
        wm_cols = [
            "wm_{:d}".format(i) for i in range(self.inputs.n_components)
        ]
        cols = wm_cols + ["brain"]
        index = np.arange(ts_data.shape[-1])
        out_df = pd.DataFrame(index=index, columns=cols, dtype=np.float)

        # Extract eigenvariates of the white matter timeseries
        wm_ts = ts_data[wm_mask.astype(bool)].T
        wm_pca = decomp.PCA(self.inputs.n_components)
        wm_comp = wm_pca.fit_transform(wm_ts)
        out_df[wm_cols] = wm_comp

        # Extract the mean whole-brain timeseries
        brain_ts = ts_data[brain_mask.astype(bool)].mean(axis=0)
        out_df["brain"] = brain_ts

        # Write out the resulting data to disk
        out_df.to_csv("nuisance_variables.csv", index=False)

        return runtime

    _list_outputs = list_out_file("nuisance_variables.csv")