def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) with raises(ValueError, match="Invalid parameter"): pipe.set_params(fake='nope') # nested model check with raises(ValueError, match="Invalid parameter"): pipe.set_params(fake__estimator='nope')
def test_set_pipeline_steps(): transf1 = Transf() transf2 = Transf() pipeline = Pipeline([('mock', transf1)]) assert pipeline.named_steps['mock'] is transf1 # Directly setting attr pipeline.steps = [('mock2', transf2)] assert 'mock' not in pipeline.named_steps assert pipeline.named_steps['mock2'] is transf2 assert [('mock2', transf2)] == pipeline.steps # Using set_params pipeline.set_params(steps=[('mock', transf1)]) assert [('mock', transf1)] == pipeline.steps # Using set_params to replace single step pipeline.set_params(mock=transf2) assert [('mock', transf2)] == pipeline.steps # With invalid data pipeline.set_params(steps=[('junk', ())]) with raises(TypeError): pipeline.fit([[1]], [1]) with raises(TypeError): pipeline.fit_transform([[1]], [1])
def test_pipeline_init(): # Test the various init parameters of the pipeline. with raises(TypeError): Pipeline() # Check that we can't instantiate pipelines with objects without fit # method error_regex = 'Last step of Pipeline should implement fit. .*NoFit.*' with raises(TypeError, match=error_regex): Pipeline([('clf', NoFit())]) # Smoke test with only an estimator clf = NoTrans() pipe = Pipeline([('svc', clf)]) expected = dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False)) assert pipe.get_params(deep=True) == expected # Check that params are set pipe.set_params(svc__a=0.1) assert clf.a == 0.1 assert clf.b is None # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't instantiate with non-transformers on the way # Note that NoTrans implements fit, but not transform error_regex = 'implement fit and transform or sample' with raises(TypeError, match=error_regex): Pipeline([('t', NoTrans()), ('svc', clf)]) # Check that params are set pipe.set_params(svc__C=0.1) assert clf.C == 0.1 # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong with raises(ValueError): pipe.set_params(anova__C=0.1) # Test clone pipe2 = clone(pipe) assert not pipe.named_steps['svc'] is pipe2.named_steps['svc'] # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert params == params2