Final_pos[i])
                    if len(S[i]) > priority_radius[i]:

                        index = list(range(priority_radius[i]))
                    else:
                        index = list(range(len(S[i])))

                    defined_path[i] = list()
                    for j in index:
                        defined_path[i].append(S[i][j])
                    pivot_state[i] = defined_path[i][-1]
                    logical_state[i] = S[i][1]

                except:

                    blocked = rc.check_block(G.transitions, real_state[i],
                                             blacklist[i])
                    if blocked:
                        S[i] = [real_state[i]]
                        T[i] = [None]
                        defined_path[i] = [S[i][0]]
                        pivot_state[i] = S[i][0]
                        logical_state[i] = S[i][0]

                    else:
                        white_auto = G.transitions[real_state[i]]
                        white_keys = white_auto.keys()
                        white_list = list()
                        # print(i)
                        # print('black',blacklist)
                        for j in white_keys:
                            # print(j)
Exemple #2
0
def EXPERIMENT03():
    #Size of the Matrix of states
    w, h, N = 8, 5, 20

    #Creating States
    number_of_states = w * h
    states = [None] * number_of_states

    #Defining the positions of each State
    for i in range(number_of_states):
        states[i] = automata.State('S' + str(i))

    # Creating events
    number_of_events = 4 * w * h + 2 * (w + h - 2)
    events = [None] * number_of_events
    for i in range(number_of_events):
        events[i] = automata.Event(('e' + str(i)), 1, True)

    #Creating the automaton itself and its positions
    trans = dict()
    Matrix_states = [[0 for x in range(w)] for y in range(h)]
    #Data about positions
    wsize = 3.2
    whalf = wsize / 2
    hsize = 2
    hhalf = hsize / 2
    Initial_point = np.array([0, 0, 0])
    wdif = wsize / (w)
    hdif = hsize / (h)
    positions = [[0 for x in range(w)] for y in range(h)]
    DIC_POSITIONS = dict()
    counter_states = 0
    for i in range(h):
        for j in range(w):
            Matrix_states[i][j] = states[counter_states]
            trans[states[counter_states]] = dict()
            positions[i][j] = [
                x + y
                for x, y in zip(Initial_point, [(j - (w - 1) / 2) *
                                                wdif, (-i +
                                                       (h - 1) / 2) * hdif, 0])
            ]
            DIC_POSITIONS[states[counter_states]] = positions[i][j]
            counter_states += 1
    counter_events = 0

    for i in range(h):
        for j in range(w):
            if i < (h - 1):
                trans[Matrix_states[i][j]][
                    events[counter_events]] = Matrix_states[i + 1][j]
                counter_events += 1
            if i > (0):
                trans[Matrix_states[i][j]][
                    events[counter_events]] = Matrix_states[i - 1][j]
                counter_events += 1
            if j < (w - 1):
                trans[Matrix_states[i][j]][
                    events[counter_events]] = Matrix_states[i][j + 1]
                counter_events += 1
            if j > (0):
                trans[Matrix_states[i][j]][
                    events[counter_events]] = Matrix_states[i][j - 1]
                counter_events += 1

    G = automata.Automaton(trans, events[0])

    #Creating inputs for robotarium
    RADIUS = 0.06

    # Experiment 3 - Compound movement
    Initial_pos = (Matrix_states[0][:] + Matrix_states[4][:] +
                   [Matrix_states[2][0]] + [Matrix_states[2][3]] +
                   [Matrix_states[2][4]] + [Matrix_states[2][7]])
    Final_pos = (Matrix_states[4][:] + Matrix_states[0][:] +
                 [Matrix_states[2][3]] + [Matrix_states[2][0]] +
                 [Matrix_states[2][7]] + [Matrix_states[2][4]])

    real_state = Initial_pos
    pivot_state = [[]] * N
    past_state = [[]] * N
    past_state2 = [[]] * N

    #Path planning variables
    N = len(Final_pos)
    T = [None] * N
    S = [None] * N
    T_optimal = [None] * N
    S_optimal = [None] * N
    T_dj = [None] * N
    S_dj = [None] * N
    logical_state = [None] * N
    priority_radius = [2] * N

    buffer = [0] * N
    communication_radius = [3] * N
    blacklist = dict()
    blacklist_individual = dict()
    calculating = [True] * N
    defined_path = dict()
    calculating = [True] * N
    for i in range(N):
        blacklist[i] = []
        defined_path[i] = []

    #Control variables
    possible = rc.FC_POSSIBLE_STATES_ARRAY(DIC_POSITIONS)
    goal_points = np.ones([3, N])

    # Initializing the states list
    initial_points = rc.FC_SET_ALL_POSITIONS(DIC_POSITIONS, Initial_pos)

    # Initializing the robotarium
    r = robotarium.Robotarium(number_of_robots=N,
                              show_figure=True,
                              initial_conditions=initial_points,
                              sim_in_real_time=True)
    single_integrator_position_controller = create_si_position_controller()
    __, uni_to_si_states = create_si_to_uni_mapping()
    si_to_uni_dyn = create_si_to_uni_dynamics_with_backwards_motion()
    x = r.get_poses()
    x_si = uni_to_si_states(x)  #"""
    r.step()

    RUN = True
    first = [True] * N
    finished = [0] * N

    # Creating an structure of past states during actual order
    past = dict()
    for s in range(N):
        past[s] = []
    string_size = list()
    while real_state != Final_pos:
        x = r.get_poses()
        x_si = uni_to_si_states(x)
        # Update Real State
        for i in range(N):
            blacklist[i] = []
            past_state[i] = real_state[i]
            real_state[i] = rc.FC_MAKE_REAL_TRANSITION(possible, states,
                                                       real_state[i], x, i,
                                                       RADIUS)
            if past_state[i] != real_state[i]:
                past_state2[i] = past_state[i]

        for i in range(N):
            if real_state[i] != Final_pos[i]:
                if real_state[i] == pivot_state[i]:
                    #Recalculus of route is necessary
                    calculating[i] = True
                elif real_state[i] == logical_state[i]:
                    #Update Robotarium state orders, no recalculus is needed
                    defined_path[i].pop(0)
                    logical_state[i] = defined_path[i][1]
                if calculating[i]:
                    for j in range(N):
                        if j != i:
                            d_real = dk.DIST(G, real_state[j],
                                             communication_radius[j])
                            if real_state[i] in d_real:
                                #Update blacklist[i]
                                if S[j] != None and len(defined_path[j]) > 1:

                                    start_black = True
                                    for k in range(len(defined_path[j])):
                                        if start_black:
                                            blacklist[
                                                i] = rc.add_black_real_logical(
                                                    G, blacklist[i],
                                                    defined_path[j][k],
                                                    defined_path[j][k + 1])
                                            start_black = False
                                        else:
                                            blacklist[i] = rc.add_black3(
                                                G, blacklist[i],
                                                defined_path[j][k])
                                            start_black = False
                                else:
                                    blacklist[i] = rc.add_black3(
                                        G, blacklist[i], real_state[j])

                    #Update Path[i]
                    (T_optimal[i],
                     S_optimal[i]) = dk.PATH2(G, [], real_state[i],
                                              Final_pos[i])
                    try:
                        (T[i], S[i]) = dk.PATH2(G, blacklist[i], real_state[i],
                                                Final_pos[i])
                        if len(S[i]) > priority_radius[i]:

                            index = list(range(priority_radius[i]))
                        else:
                            index = list(range(len(S[i])))

                        defined_path[i] = list()
                        for j in index:
                            defined_path[i].append(S[i][j])
                        if len(S[i]) > len(S_optimal[i]):
                            if len(defined_path[i]) > 2:
                                for j in reversed(
                                        range(2, len(defined_path[i]))):
                                    if defined_path[i][j] not in S_optimal[i]:
                                        defined_path[i].pop(j)
                        pivot_state[i] = defined_path[i][-1]
                        logical_state[i] = S[i][1]
                        if logical_state[i] == past_state2[i]:

                            try:

                                blacklist[i] = rc.add_black3(
                                    G, blacklist[i], past_state2[i])

                                (T[i],
                                 S[i]) = dk.PATH2(G, blacklist[i],
                                                  real_state[i], Final_pos[i])
                                if len(S[i]) > priority_radius[i]:

                                    index = list(range(priority_radius[i]))
                                else:
                                    index = list(range(len(S[i])))

                                defined_path[i] = list()
                                for j in index:
                                    defined_path[i].append(S[i][j])
                                pivot_state[i] = defined_path[i][-1]
                                logical_state[i] = S[i][1]
                            except:
                                pass
                    except:

                        blocked = rc.check_block(G.transitions, real_state[i],
                                                 blacklist[i])
                        if blocked:
                            S[i] = [real_state[i]]
                            T[i] = [None]
                            defined_path[i] = [S[i][0]]
                            pivot_state[i] = S[i][0]
                            logical_state[i] = S[i][0]

                        else:
                            white_auto = G.transitions[real_state[i]]
                            white_keys = white_auto.keys()
                            white_list = list()
                            for j in white_keys:
                                # print(j)
                                if j not in blacklist[i]:
                                    if white_auto[j] != past_state2[i]:
                                        white_list.append(j)
                                    else:
                                        past_event = j

                            if len(white_list) >= 1:
                                white_event = random.choice(white_list)
                            elif past_event not in blacklist[i]:
                                white_event = past_event
                            S[i] = [real_state[i], white_auto[white_event]]
                            T[i] = [white_event]

                            defined_path[i] = [
                                real_state[i], white_auto[white_event]
                            ]

                            pivot_state[i] = S[i][1]
                            logical_state[i] = S[i][1]

                    calculating[i] = False

            else:
                #Reached final position
                # Reached final position
                logical_state[i] = real_state[i]

        for j in range(N):
            if logical_state[j] != None:
                rc.FC_SET_GOAL_POINTS(DIC_POSITIONS, goal_points, j,
                                      logical_state[j])
            else:
                rc.FC_SET_GOAL_POINTS(DIC_POSITIONS, goal_points, j,
                                      real_state[j])
        dxi = single_integrator_position_controller(x_si, goal_points[:2][:])
        dxu = si_to_uni_dyn(dxi, x)
        r.set_velocities(np.arange(N), dxu)

        r.step()

    r.call_at_scripts_end()

    time_of_execution = r._iterations * 0.033
    return (time_of_execution)
 for i in range(N):
     # Read real state
     real_state[i] = rc.FC_MAKE_REAL_TRANSITION(possible, states,
                                                real_state[i], x, i, RADIUS)
     # Update blacklist
     blacklist = list()
     for j in range(N):
         if logical_state[j] != None:
             blacklist = rc.add_black3(G, blacklist, logical_state[j])
             blacklist = rc.add_black_real_logical(G, blacklist,
                                                   real_state[j],
                                                   logical_state[j])
         else:
             blacklist = rc.add_black3(G, blacklist, real_state[j])
     # Check momentaneous block
     Block = rc.check_block(trans, real_state[i], blacklist)
     if Block:
         # If blocked, must stand still
         S[i] = [real_state[i]]
         T[i] = [None]
     else:
         # If not blocked, must search for a path
         (T_dj[i], S_dj[i]) = dk.PATH(G, [], real_state[i], Final_pos[i])
         (T[i], S[i]) = dk.PATH(G, blacklist, real_state[i], Final_pos[i])
         blacklist2 = blacklist
         if len(past[i]) > 1:
             print(past[i][-1])
             blacklist2 = rc.add_black3(G, blacklist2, past[i][-1])
         Block2 = rc.check_block(trans, real_state[i], blacklist2)
         if not Block2:
             (T[i], S[i]) = dk.PATH(G, blacklist2, real_state[i],