Exemple #1
0
    def test_save_checkpoint_calls_torch_save(self, mock_open, mock_dill,
                                              mock_torch):
        epoch = 5
        step = 10
        optim = mock.Mock()
        state_dict = {'epoch': epoch, 'step': step, 'optimizer': optim}

        mock_model = mock.Mock()
        mock_vocab = mock.Mock()
        mock_open.return_value = mock.MagicMock()

        chk_point = Checkpoint(model=mock_model,
                               optimizer=optim,
                               epoch=epoch,
                               step=step,
                               input_vocab=mock_vocab,
                               output_vocab=mock_vocab)

        path = chk_point.save(self._get_experiment_dir())

        self.assertEquals(2, mock_torch.save.call_count)
        mock_torch.save.assert_any_call(
            state_dict,
            os.path.join(chk_point.path, Checkpoint.TRAINER_STATE_NAME))
        mock_torch.save.assert_any_call(
            mock_model, os.path.join(chk_point.path, Checkpoint.MODEL_NAME))
        self.assertEquals(2, mock_open.call_count)
        mock_open.assert_any_call(
            os.path.join(path, Checkpoint.INPUT_VOCAB_FILE), ANY)
        mock_open.assert_any_call(
            os.path.join(path, Checkpoint.OUTPUT_VOCAB_FILE), ANY)
        self.assertEquals(2, mock_dill.dump.call_count)
        mock_dill.dump.assert_any_call(
            mock_vocab, mock_open.return_value.__enter__.return_value)
Exemple #2
0
def load_model_from_checkpoint(opt, src, tgt):
    logging.info("loading checkpoint from {}".format(
        os.path.join(opt.output_dir, opt.load_checkpoint)))
    checkpoint_path = os.path.join(opt.output_dir, opt.load_checkpoint)
    checkpoint = Checkpoint.load(checkpoint_path)
    seq2seq = checkpoint.model

    input_vocab = checkpoint.input_vocab
    src.vocab = input_vocab

    output_vocab = checkpoint.output_vocab
    tgt.vocab = output_vocab
    tgt.eos_id = tgt.vocab.stoi[tgt.SYM_EOS]
    tgt.sos_id = tgt.vocab.stoi[tgt.SYM_SOS]

    return seq2seq, input_vocab, output_vocab
Exemple #3
0
    def test_load(self, mock_open, mock_dill, mock_torch):
        dummy_vocabulary = mock.Mock()
        mock_optimizer = mock.Mock()
        torch_dict = {"optimizer": mock_optimizer, "epoch": 5, "step": 10}
        mock_open.return_value = mock.MagicMock()
        mock_torch.load.side_effect = [torch_dict, mock.MagicMock()]
        mock_dill.load.return_value = dummy_vocabulary

        loaded_chk_point = Checkpoint.load("mock_checkpoint_path")

        mock_torch.load.assert_any_call(
            os.path.join('mock_checkpoint_path',
                         Checkpoint.TRAINER_STATE_NAME))
        mock_torch.load.assert_any_call(
            os.path.join("mock_checkpoint_path", Checkpoint.MODEL_NAME))

        self.assertEquals(loaded_chk_point.epoch, torch_dict['epoch'])
        self.assertEquals(loaded_chk_point.optimizer, torch_dict['optimizer'])
        self.assertEquals(loaded_chk_point.step, torch_dict['step'])
        self.assertEquals(loaded_chk_point.input_vocab, dummy_vocabulary)
        self.assertEquals(loaded_chk_point.output_vocab, dummy_vocabulary)
def load_models_from_paths(paths: list, src, tgt):
    """
    Load all the models specified in a list of paths.
    """
    models = []

    for path in paths:
        checkpoint = Checkpoint.load(path)
        models.append(checkpoint.model)

    # Build vocab once
    input_vocab = checkpoint.input_vocab
    src.vocab = input_vocab
    input_vocab = checkpoint.input_vocab
    src.vocab = input_vocab
    output_vocab = checkpoint.output_vocab
    tgt.vocab = output_vocab
    tgt.eos_id = tgt.vocab.stoi[tgt.SYM_EOS]
    tgt.sos_id = tgt.vocab.stoi[tgt.SYM_SOS]

    return models, input_vocab, output_vocab
Exemple #5
0
if opt.use_attention_loss and opt.attention_method == 'hard':
    parser.warning(
        "Did you mean to use attention loss in combination with hard attention method?"
    )

if torch.cuda.is_available():
    logging.info("Cuda device set to %i" % opt.cuda_device)
    torch.cuda.set_device(opt.cuda_device)

#################################################################################
# load model

logging.info("loading checkpoint from {}".format(
    os.path.join(opt.checkpoint_path)))
checkpoint = Checkpoint.load(opt.checkpoint_path)
seq2seq = checkpoint.model
input_vocab = checkpoint.input_vocab
output_vocab = checkpoint.output_vocab

############################################################################
# Prepare dataset and loss
src = SourceField()
tgt = TargetField(output_eos_used)

tabular_data_fields = [('src', src), ('tgt', tgt)]

if opt.use_attention_loss or opt.attention_method == 'hard':
    attn = AttentionField(use_vocab=False, ignore_index=IGNORE_INDEX)
    tabular_data_fields.append(('attn', attn))
Exemple #6
0
 def test_path_error(self):
     ckpt = Checkpoint(None, None, None, None, None, None)
     self.assertRaises(LookupError, lambda: ckpt.path)
Exemple #7
0
            tgt_len = len(vars(m[0])['tgt']) - 1  # -1 for SOS
            attn_len = len(vars(
                m[0])['attn']) - 1  # -1 for preprended ignore_index
            if attn_len != tgt_len:
                raise Exception(
                    "Length of output sequence does not equal length of attention sequence in monitor data."
                )

#################################################################################
# prepare model

if opt.load_checkpoint is not None:
    logging.info("loading checkpoint from {}".format(
        os.path.join(opt.output_dir, opt.load_checkpoint)))
    checkpoint_path = os.path.join(opt.output_dir, opt.load_checkpoint)
    checkpoint = Checkpoint.load(checkpoint_path)
    seq2seq = checkpoint.model

    input_vocab = checkpoint.input_vocab
    src.vocab = input_vocab

    output_vocab = checkpoint.output_vocab
    tgt.vocab = output_vocab
    tgt.eos_id = tgt.vocab.stoi[tgt.SYM_EOS]
    tgt.sos_id = tgt.vocab.stoi[tgt.SYM_SOS]

else:
    # build vocabulary
    src.build_vocab(train, max_size=opt.src_vocab)
    tgt.build_vocab(train, max_size=opt.tgt_vocab)
    input_vocab = src.vocab
Exemple #8
0
    def train(self, model, data,
              dev_data,
              num_epochs=5,
              resume_training=False,
              monitor_data={},
              optimizer=None,
              teacher_forcing_ratio=0,
              custom_callbacks=[],
              learning_rate=0.001,
              checkpoint_path=None,
              top_k=5,
              losses=[NLLLoss()],
              loss_weights=None,
              metrics=[],
              random_seed=None,
              checkpoint_every=100,
              print_every=100):
        """ Run training for a given model.

        Args:
            model (machine.models): model to run training on, if `resume=True`, it would be
               overwritten by the model loaded from the latest checkpoint.
            data (torchtext.data.Iterator: torchtext iterator object to train on
            num_epochs (int, optional): number of epochs to run (default 5)
            resume_training(bool, optional): resume training with the latest checkpoint up until the number of epochs (default False)
            dev_data (torchtext.data.Iterator): dev/validation set iterator
                Note: must not pass in the train iterator here as this gets evaluated during training (in between batches)
                If you want to evaluate on the full train during training then make two iterators and pass the second one here
            monitor_data (list of torchtext.data.Iterator, optional): list of iterators to test on (default None)
                Note: must not pass in the train iterator here as this gets evaluated during training (in between batches)
                      If you want to evaluate on the full train during training then make two iterators and pass the second one here
            optimizer (machine.optim.Optimizer, optional): optimizer for training
               (default: Optimizer(pytorch.optim.Adam, max_grad_norm=5))
            teacher_forcing_ratio (float, optional): teaching forcing ratio (default 0)
            custom_callbacks (list, optional): list of custom call backs (see utils.callbacks.callback for base class)
            learing_rate (float, optional): learning rate used by the optimizer (default 0.001)
            checkpoint_path (str, optional): path to load checkpoint from in case training should be resumed
            top_k (int): how many models should be stored during training
            loss (list, optional): list of machine.loss.Loss objects for training (default: [machine.loss.NLLLoss])
            metrics (list, optional): list of machine.metric.metric objects to be computed during evaluation
            checkpoint_every (int, optional): number of epochs to checkpoint after, (default: 100)
            print_every (int, optional): number of iterations to print after, (default: 100)
        Returns:
            model (machine.models): trained model.
        """
        self.set_local_parameters(random_seed, losses, metrics,
                                  loss_weights, checkpoint_every, print_every)
        # If training is set to resume
        if resume_training:
            resume_checkpoint = Checkpoint.load(checkpoint_path)
            model = resume_checkpoint.model
            self.model = model
            self.optimizer = resume_checkpoint.optimizer

            # A walk around to set optimizing parameters properly
            resume_optim = self.optimizer.optimizer
            defaults = resume_optim.param_groups[0]
            defaults.pop('params', None)
            defaults.pop('initial_lr', None)
            self.optimizer.optimizer = resume_optim.__class__(
                self.model.parameters(), **defaults)

            start_epoch = resume_checkpoint.epoch
            step = resume_checkpoint.step

        else:
            start_epoch = 1
            step = 0
            self.model = model

            def get_optim(optim_name):
                optims = {'adam': optim.Adam, 'adagrad': optim.Adagrad,
                          'adadelta': optim.Adadelta, 'adamax': optim.Adamax,
                          'rmsprop': optim.RMSprop, 'sgd': optim.SGD,
                          None: optim.Adam}
                return optims[optim_name]

            self.optimizer = Optimizer(get_optim(optimizer)(self.model.parameters(),
                                                            lr=learning_rate),
                                       max_grad_norm=5)

        self.logger.info("Optimizer: %s, Scheduler: %s" %
                         (self.optimizer.optimizer, self.optimizer.scheduler))

        callbacks = CallbackContainer(self,
                                      [Logger(),
                                       ModelCheckpoint(top_k=top_k),
                                       History()] + custom_callbacks)

        logs = self._train_epoches(data, num_epochs,
                                   start_epoch, step, dev_data=dev_data,
                                   monitor_data=monitor_data,
                                   callbacks=callbacks,
                                   teacher_forcing_ratio=teacher_forcing_ratio)

        return self.model, logs
Exemple #9
0
    def _train_epoches(self,
                       data,
                       model,
                       n_epochs,
                       start_epoch,
                       start_step,
                       dev_data=None,
                       monitor_data=[],
                       teacher_forcing_ratio=0,
                       top_k=5):
        log = self.logger

        print_loss_total = defaultdict(float)  # Reset every print_every
        epoch_loss_total = defaultdict(float)  # Reset every epoch
        epoch_loss_avg = defaultdict(float)
        print_loss_avg = defaultdict(float)

        iterator_device = torch.cuda.current_device(
        ) if torch.cuda.is_available() else -1
        batch_iterator = torchtext.data.BucketIterator(
            dataset=data,
            batch_size=self.batch_size,
            sort=False,
            sort_within_batch=True,
            sort_key=lambda x: len(x.src),
            device=iterator_device,
            repeat=False)

        steps_per_epoch = len(batch_iterator)
        total_steps = steps_per_epoch * n_epochs

        step = start_step
        step_elapsed = 0

        # store initial model to be sure at least one model is stored
        val_data = dev_data or data
        losses, metrics = self.evaluator.evaluate(model, val_data,
                                                  self.get_batch_data)

        total_loss, log_msg, model_name = self.get_losses(
            losses, metrics, step)
        log.info(log_msg)

        logs = Log()
        loss_best = top_k * [total_loss]
        best_checkpoints = top_k * [None]
        best_checkpoints[0] = model_name

        Checkpoint(
            model=model,
            optimizer=self.optimizer,
            epoch=start_epoch,
            step=start_step,
            input_vocab=data.fields[machine.src_field_name].vocab,
            output_vocab=data.fields[machine.tgt_field_name].vocab).save(
                self.expt_dir, name=model_name)

        for epoch in range(start_epoch, n_epochs + 1):
            log.info("Epoch: %d, Step: %d" % (epoch, step))

            batch_generator = batch_iterator.__iter__()

            # consuming seen batches from previous training
            for _ in range((epoch - 1) * steps_per_epoch, step):
                next(batch_generator)

            model.train(True)
            for batch in batch_generator:
                step += 1
                step_elapsed += 1

                input_variables, input_lengths, target_variables = self.get_batch_data(
                    batch)

                losses = self._train_batch(input_variables,
                                           input_lengths.tolist(),
                                           target_variables, model,
                                           teacher_forcing_ratio)

                # Record average loss
                for loss in losses:
                    name = loss.log_name
                    print_loss_total[name] += loss.get_loss()
                    epoch_loss_total[name] += loss.get_loss()

                # print log info according to print_every parm
                if step % self.print_every == 0 and step_elapsed > self.print_every:
                    for loss in losses:
                        name = loss.log_name
                        print_loss_avg[
                            name] = print_loss_total[name] / self.print_every
                        print_loss_total[name] = 0

                    m_logs = {}
                    train_losses, train_metrics = self.evaluator.evaluate(
                        model, data, self.get_batch_data)
                    train_loss, train_log_msg, model_name = self.get_losses(
                        train_losses, train_metrics, step)
                    logs.write_to_log('Train', train_losses, train_metrics,
                                      step)
                    logs.update_step(step)

                    m_logs['Train'] = train_log_msg

                    # compute vals for all monitored sets
                    for m_data in monitor_data:
                        losses, metrics = self.evaluator.evaluate(
                            model, monitor_data[m_data], self.get_batch_data)
                        total_loss, log_msg, model_name = self.get_losses(
                            losses, metrics, step)
                        m_logs[m_data] = log_msg
                        logs.write_to_log(m_data, losses, metrics, step)

                    all_losses = ' '.join([
                        '%s:\t %s\n' % (os.path.basename(name), m_logs[name])
                        for name in m_logs
                    ])

                    log_msg = 'Progress %d%%, %s' % (step / total_steps * 100,
                                                     all_losses)

                    log.info(log_msg)

                # check if new model should be saved
                if step % self.checkpoint_every == 0 or step == total_steps:
                    # compute dev loss
                    losses, metrics = self.evaluator.evaluate(
                        model, val_data, self.get_batch_data)
                    total_loss, log_msg, model_name = self.get_losses(
                        losses, metrics, step)

                    max_eval_loss = max(loss_best)
                    if total_loss < max_eval_loss:
                        index_max = loss_best.index(max_eval_loss)
                        # rm prev model
                        if best_checkpoints[index_max] is not None:
                            shutil.rmtree(
                                os.path.join(self.expt_dir,
                                             best_checkpoints[index_max]))
                        best_checkpoints[index_max] = model_name
                        loss_best[index_max] = total_loss

                        # save model
                        Checkpoint(model=model,
                                   optimizer=self.optimizer,
                                   epoch=epoch,
                                   step=step,
                                   input_vocab=data.fields[
                                       machine.src_field_name].vocab,
                                   output_vocab=data.fields[
                                       machine.tgt_field_name].vocab).save(
                                           self.expt_dir, name=model_name)

            if step_elapsed == 0: continue

            for loss in losses:
                epoch_loss_avg[
                    loss.log_name] = epoch_loss_total[loss.log_name] / min(
                        steps_per_epoch, step - start_step)
                epoch_loss_total[loss.log_name] = 0

            if dev_data is not None:
                losses, metrics = self.evaluator.evaluate(
                    model, dev_data, self.get_batch_data)
                loss_total, log_, model_name = self.get_losses(
                    losses, metrics, step)

                self.optimizer.update(loss_total,
                                      epoch)  # TODO check if this makes sense!
                log_msg += ", Dev set: " + log_
                model.train(mode=True)
            else:
                self.optimizer.update(epoch_loss_avg,
                                      epoch)  # TODO check if this makes sense!

            log.info(log_msg)

        return logs
Exemple #10
0
    def train(self,
              model,
              data,
              num_epochs=5,
              resume=False,
              dev_data=None,
              monitor_data={},
              optimizer=None,
              teacher_forcing_ratio=0,
              learning_rate=0.001,
              checkpoint_path=None,
              top_k=5):
        """ Run training for a given model.

        Args:
            model (machine.models): model to run training on, if `resume=True`, it would be
               overwritten by the model loaded from the latest checkpoint.
            data (machine.dataset.dataset.Dataset): dataset object to train on
            num_epochs (int, optional): number of epochs to run (default 5)
            resume(bool, optional): resume training with the latest checkpoint, (default False)
            dev_data (machine.dataset.dataset.Dataset, optional): dev Dataset (default None)
            optimizer (machine.optim.Optimizer, optional): optimizer for training
               (default: Optimizer(pytorch.optim.Adam, max_grad_norm=5))
            teacher_forcing_ratio (float, optional): teaching forcing ratio (default 0)
            learing_rate (float, optional): learning rate used by the optimizer (default 0.001)
            checkpoint_path (str, optional): path to load checkpoint from in case training should be resumed
            top_k (int): how many models should be stored during training
        Returns:
            model (machine.models): trained model.
        """
        # If training is set to resume
        if resume:
            resume_checkpoint = Checkpoint.load(checkpoint_path)
            model = resume_checkpoint.model
            self.optimizer = resume_checkpoint.optimizer

            # A walk around to set optimizing parameters properly
            resume_optim = self.optimizer.optimizer
            defaults = resume_optim.param_groups[0]
            defaults.pop('params', None)
            defaults.pop('initial_lr', None)
            self.optimizer.optimizer = resume_optim.__class__(
                model.parameters(), **defaults)

            start_epoch = resume_checkpoint.epoch
            step = resume_checkpoint.step
        else:
            start_epoch = 1
            step = 0

            def get_optim(optim_name):
                optims = {
                    'adam': optim.Adam,
                    'adagrad': optim.Adagrad,
                    'adadelta': optim.Adadelta,
                    'adamax': optim.Adamax,
                    'rmsprop': optim.RMSprop,
                    'sgd': optim.SGD,
                    None: optim.Adam
                }
                return optims[optim_name]

            self.optimizer = Optimizer(get_optim(optimizer)(model.parameters(),
                                                            lr=learning_rate),
                                       max_grad_norm=5)

        self.logger.info("Optimizer: %s, Scheduler: %s" %
                         (self.optimizer.optimizer, self.optimizer.scheduler))

        logs = self._train_epoches(data,
                                   model,
                                   num_epochs,
                                   start_epoch,
                                   step,
                                   dev_data=dev_data,
                                   monitor_data=monitor_data,
                                   teacher_forcing_ratio=teacher_forcing_ratio,
                                   top_k=top_k)
        return model, logs