Distance(A,B, 1),
	Distance(A,C, 1),
	Distance(B,C, 1),
	]
solve(csts, fixed=[A], afterset=lambda x: print(repr((A,B,C))))
print('final', repr((A,B,C)))
show([AB,AC,BC, csts])

print('\ntangent arc')
A = Point(0, 0, 0)
B = Point(1, 0, 0)
C = Point(0, 1, 0)
AB = Segment(A,B)
AC = Segment(A,C)
O = Point(0.8,0.8,0)
Z = vec3(0,0,1)
BC = ArcCentered((O,Z), B,C)

csts = [
	Distance(A,B, 1),
	Distance(A,C, 1),
	Distance(B,C, 1),	# resolution en cas de probleme sous-contraint: enlever cette ligne
	Tangent(AB,BC,B),
	Tangent(AC,BC,C),
	]
solve(csts, fixed=[A,Z], afterset=lambda x: print(repr((A,B,C,O))))
print('final', repr((A,B,C,O)))
show([AB, AC, BC, csts])

print('\nangle')
A = Point(0, 0, 0)
Exemple #2
0
from time import time
from copy import deepcopy
from nprint import nprint
from madcad import vec3,mat4, rotate, Mesh, quat, transform, normalize
from madcad.boolean import difference, booleanwith, intersectwith
from madcad import boolean

from madcad import show

m1 = Mesh(
	[
		vec3(1.0, -1.0, -1.0),
		vec3(1.0, -1.0, 1.0),
		vec3(-1.0, -1.0, 1.0),
		vec3(-1.0, -1.0, -1.0),
		vec3(1.0, 1.0, -1.0),
		vec3(1.0, 1.0, 1.0),
		vec3(-1.0, 1.0, 1.0),
		vec3(-1.0, 1.0, -1.0)],
	[
		(0, 1, 2),
		(0, 2, 3),
		(4, 7, 6),
		(4, 6, 5),
		(0, 4, 5),
		(0, 5, 1),
		(1, 5, 6),
		(1, 6, 2),
		(2, 6, 7),
		(2, 7, 3),
		(4, 0, 3),
Exemple #3
0
# test intersections
from madcad import vec3, saddle, tube, ArcThrough, Web, web, bevel, chamfer, show
from madcad.mesh import suites
from madcad.cut import multicut
from nprint import nprint
from copy import deepcopy

m = saddle(
    Web([
        vec3(-2, 1.5, 0),
        vec3(-1, 1, 0),
        vec3(0, 0, 0),
        vec3(1, 1, 0),
        vec3(1.5, 2, 0)
    ], [(0, 1), (1, 2), (2, 3), (3, 4)], [0, 1, 2, 3]),
    #web(vec3(0,1,-1),vec3(0,0,0),vec3(0,1,1)),
    #web(ArcThrough(vec3(0,1,-1),vec3(0,1.5,0),vec3(0,1,1))),
    web(ArcThrough(vec3(0, 1, -1), vec3(0, 1.3, -0.5), vec3(0, 1, 0)),
        ArcThrough(vec3(0, 1, 0), vec3(0, 0.7, 0.5), vec3(0, 1, 1))),
)
m.check()

#cut.cut_corner(m, 87, 0.6*vec3(0,0.2,0.05))
w = m.frontiers((1, 2)) + m.frontiers((5, 6))
#multicut(m, w, ('depth', 0.6))
#chamfer(m, w, ('depth', 0.6))
bevel(m, w, ('depth', 0.6))
#beveltgt(m, w, ('depth', 0.6))
m.check()

#m.check()	# TODO fix the face using the same point multiple times
from madcad import vec3, Box, brick, show
from madcad.mesh import suites
from madcad.cut import *
from madcad import scaledir, normalize

cube = brick(
    Box(center=vec3(0),
        width=vec3(2)))  #.transform(scaledir(normalize(vec3(1)), 0.5))
w = [(0, 1), (1, 2), (2, 3), (0, 3), (1, 5), (0, 4)]
#multicut(cube, w, ('width', 0.3))
#chamfer(cube, w, ('width', 0.3))
bevel(cube, w, ('width', 0.3))

cube.mergeclose()
cube.check()
#cube.options = {'debug_display':True, 'debug_points':True}
show([cube], options={'display_wire': True})
from madcad import vec3, show
from madcad.kinematic import *
from madcad.joints import *

s1 = Solid()
s2 = Solid(pose=(vec3(0,0,0.5), vec3(1,0,0)))
s3 = Solid()
s4 = Solid()
A = vec3(2,0,0)
B = vec3(0,2,0)
C = vec3(0,-1,1)
D = vec3(1,-2,0)
x = vec3(1,0,0)
y = vec3(0,1,0)
csts = [Pivot(s1,s2, (A,x)), Ball(s1,s2, B), Plane(s2,s3, (C,y), position=(C,C)), Punctiform(s3,s4,(D,y))]

makescheme(csts)
show([s1, s2, s3, s4, A, B, C, D])
from madcad import vec3, Mesh, Web, show
from madcad.hashing import *
from nprint import nprint

triangles = Mesh(
    [
        vec3(1, 1, 0),
        vec3(3, 1, 0),
        vec3(1, 3, 0),
        vec3(0, 1, 1),
        vec3(0, 3, 1),
        vec3(0, 1, 4),
        vec3(1, 0, 1),
        vec3(3, 0, 1),
        vec3(1, 0, 4),
        vec3(1, 2, 5),
        vec3(-3, 0, 4),
        vec3(4, -2, 7),
        vec3(-0.2, -1, 0.452081),
        vec3(-0.796834, -0.403166, -0.550011),
        vec3(0.114227, -1.31423, 0.979673),
    ],
    [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 14)],
)
lines = Web(
    [
        vec3(5, 0, 0),
        vec3(5, 0, 4),
        vec3(0, 5, 0),
        vec3(0, 6, 4),
        #vec3(-6,-8,9), vec3(-2,-5,2),
Exemple #7
0
from random import random, randint
from madcad import vec3, Mesh, show, Circle, extrusion, web
from madcad.blending import *

if False:
    interface = [
        Circle((vec3(0, 0, 3), vec3(0, 0, 1)), 1),
        Circle((vec3(-1, -1, -1), normalize(vec3(-1, -1, -1))), 1),
        Circle((vec3(1, -1, -1), normalize(vec3(1, -1, -1))), 1),
        Circle((vec3(0, 1, 0), normalize(vec3(0, 1, -1))), 1),
    ]

    m = junction(
        interface[0],
        interface[1],
        interface[2],
        (interface[3], 'normal'),
        tangents='tangent',
    )
    for c in interface:
        m += extrusion(c.axis[1] * 3, web(c))

if False:
    z = vec3(0, 0, 1)
    x = normalize(vec3(1, 1, 0))
    interfaces = [
        extrusion(2 * z, web(Circle((vec3(0), z), 1))),
        extrusion(5 * z, web(Circle((vec3(2, 0, -2), z), 0.6))),
    ]
    m = junction(
        interfaces[0],
Exemple #8
0
from madcad import vec3, normalize, show, Box
from madcad.kinematic import *
from madcad.joints import *

O = vec3(0)
X = vec3(1,0,0)
Y = vec3(0,1,0)
Z = vec3(0,0,1)

s0 = Solid(name='base')
s1 = Solid(pose=(vec3(0,0,0), vec3(0,0,1)))
s2 = Solid(pose=(vec3(2,0,1.5), 2*vec3(1,1,0)))
s3 = Solid()
s4 = Solid()
s5 = Solid(name='wrist')
s6 = Solid()

# basic structure
csts = [
	#Plane(s0,s1, (O,Z)),  
	#Pivot(s0,s1, (O,Z)),
	#Track(s0,s1, (vec3(0,0,10),X,Y), (O,X,Y)),
	Gliding(s0,s1, (O,Z)),
	Pivot(s1,s2, (vec3(0,0,1), X), (vec3(0,0,-1), X)),
	#Pivot(s2,s3, (vec3(0,0,2), normalize(vec3(1,1,0))), (O,X)),
	
	Pivot(s2,s3, (vec3(0,0,2), X), (O,X)),
	Pivot(s3,s4, (vec3(0,0,2), X), (O,X)),
	Pivot(s4,s5, (vec3(0,0,2), X), (O,X)),
	]