Exemple #1
0
    def __init__(self, tag, field='Br', precision='Float32', avg=False):
        """
        :param tag: if you specify a pattern, it tries to read the corresponding 
                    files and stack them.
        :type tag: str
        :param field: nature of the radial spectra. Possible choices are
                      'Bt' or 'Bp'
        :type field: str
        :param precision: single or double precision (default single, i.e. 'Float32')
        :type precision: str
        :param avg: when set to True, display time averaged quantities
        :type avg: bool
        """

        logFiles = scanDir('log.*')
        if len(logFiles) != 0:
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])
            self.n_r_max = int(self.n_r_max)
            self.n_r_ic_max = int(self.n_r_ic_max)
        else:
            n_r_max = 'n_r_max ?\n'
            self.n_r_max = int(input(str1))
            n_r_ic_max = 'n_r_ic_max ?\n'
            self.n_r_ic_max = int(input(str1))
            str1 = 'Aspect ratio ?\n'
            self.radratio = float(input(str1))

        self.n_r_tot = self.n_r_max+self.n_r_ic_max

        self.ricb = self.radratio/(1.-self.radratio)
        self.rcmb = 1./(1.-self.radratio)
        outerCoreGrid = chebgrid(self.n_r_max-1, self.rcmb, self.ricb)
        n_r_ic_tot = 2*self.n_r_ic_max-1
        innerCoreGrid = chebgrid(n_r_ic_tot-1, self.ricb, -self.ricb)

        self.radius = np.zeros((self.n_r_tot-1), dtype=precision)

        self.radius[:self.n_r_max] = outerCoreGrid
        self.radius[self.n_r_max-1:] = innerCoreGrid[:self.n_r_ic_max]

        pattern = 'r%s' % field +'Spec'
        files = scanDir('%s.%s' % (pattern, tag))

        # Read the rB[rp]Spec.TAG files (stack them)
        data = []
        for k, file in enumerate(files):
            print('Reading %s' % file)
            f = npfile(file, endian='B')

            while 1:
                try:
                    data.append(f.fort_read(precision))
                except TypeError:
                    break
        data = np.array(data, dtype=precision)

        # Time (every two lines only)
        self.time = data[::2, 0]

        # Poloidal/Toroidal energy for all radii for the 6 first spherical harmonic
        # degrees
        self.e_pol = np.zeros((len(self.time), self.n_r_tot-1, 6), dtype=precision)
        self.e_pol_axi = np.zeros_like(self.e_pol)

        self.e_pol[:, :, 0] = data[::2, 1:self.n_r_tot]
        self.e_pol[:, :, 1] = data[::2, self.n_r_tot-1:2*(self.n_r_tot-1)]
        self.e_pol[:, :, 2] = data[::2, 2*(self.n_r_tot-1):3*(self.n_r_tot-1)]
        self.e_pol[:, :, 3] = data[::2, 3*(self.n_r_tot-1):4*(self.n_r_tot-1)]
        self.e_pol[:, :, 4] = data[::2, 4*(self.n_r_tot-1):5*(self.n_r_tot-1)]
        self.e_pol[:, :, 5] = data[::2, 5*(self.n_r_tot-1):6*(self.n_r_tot-1)]

        self.e_pol_axi[:, :, 0] = data[1::2, 1:self.n_r_tot]
        self.e_pol_axi[:, :, 1] = data[1::2, self.n_r_tot-1:2*(self.n_r_tot-1)]
        self.e_pol_axi[:, :, 2] = data[1::2, 2*(self.n_r_tot-1):3*(self.n_r_tot-1)]
        self.e_pol_axi[:, :, 3] = data[1::2, 3*(self.n_r_tot-1):4*(self.n_r_tot-1)]
        self.e_pol_axi[:, :, 4] = data[1::2, 4*(self.n_r_tot-1):5*(self.n_r_tot-1)]
        self.e_pol_axi[:, :, 5] = data[1::2, 5*(self.n_r_tot-1):6*(self.n_r_tot-1)]

        if avg:
            self.plotAvg()
Exemple #2
0
    def __init__(self, tag, field='Br', precision=np.float32, avg=False):
        """
        :param tag: if you specify a pattern, it tries to read the corresponding
                    files and stack them.
        :type tag: str
        :param field: nature of the radial spectra. Possible choices are
                      'Bt' or 'Bp'
        :type field: str
        :param precision: single or double precision (default single, i.e.
                          np.float32)
        :type precision: str
        :param avg: when set to True, display time averaged quantities
        :type avg: bool
        """

        logFiles = scanDir('log.*')
        if len(logFiles) != 0:
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])
            self.n_r_max = int(self.n_r_max)
            self.n_r_ic_max = int(self.n_r_ic_max)
        else:
            n_r_max = 'n_r_max ?\n'
            self.n_r_max = int(input(str1))
            n_r_ic_max = 'n_r_ic_max ?\n'
            self.n_r_ic_max = int(input(str1))
            str1 = 'Aspect ratio ?\n'
            self.radratio = float(input(str1))

        self.n_r_tot = self.n_r_max + self.n_r_ic_max

        self.ricb = self.radratio / (1. - self.radratio)
        self.rcmb = 1. / (1. - self.radratio)
        outerCoreGrid = chebgrid(self.n_r_max - 1, self.rcmb, self.ricb)
        n_r_ic_tot = 2 * self.n_r_ic_max - 1
        innerCoreGrid = chebgrid(n_r_ic_tot - 1, self.ricb, -self.ricb)

        self.radius = np.zeros((self.n_r_tot - 1), dtype=precision)

        self.radius[:self.n_r_max] = outerCoreGrid
        self.radius[self.n_r_max - 1:] = innerCoreGrid[:self.n_r_ic_max]

        pattern = 'r{}'.format(field) + 'Spec'
        files = scanDir('{}.{}'.format(pattern, tag))

        # Read the rB[rp]Spec.TAG files (stack them)
        data = []
        for k, file in enumerate(files):
            print('Reading {}'.format(file))
            f = npfile(file, endian='B')

            while 1:
                try:
                    data.append(f.fort_read(precision))
                except TypeError:
                    break
        data = np.array(data, dtype=precision)

        # Time (every two lines only)
        self.time = data[::2, 0]

        # Poloidal/Toroidal energy for all radii for the 6 first spherical harmonic
        # degrees
        self.e_pol = np.zeros((len(self.time), self.n_r_tot - 1, 6),
                              dtype=precision)
        self.e_pol_axi = np.zeros_like(self.e_pol)

        self.e_pol[:, :, 0] = data[::2, 1:self.n_r_tot]
        self.e_pol[:, :, 1] = data[::2,
                                   self.n_r_tot - 1:2 * (self.n_r_tot - 1)]
        self.e_pol[:, :,
                   2] = data[::2,
                             2 * (self.n_r_tot - 1):3 * (self.n_r_tot - 1)]
        self.e_pol[:, :,
                   3] = data[::2,
                             3 * (self.n_r_tot - 1):4 * (self.n_r_tot - 1)]
        self.e_pol[:, :,
                   4] = data[::2,
                             4 * (self.n_r_tot - 1):5 * (self.n_r_tot - 1)]
        self.e_pol[:, :,
                   5] = data[::2,
                             5 * (self.n_r_tot - 1):6 * (self.n_r_tot - 1)]

        self.e_pol_axi[:, :, 0] = data[1::2, 1:self.n_r_tot]
        self.e_pol_axi[:, :, 1] = data[1::2,
                                       self.n_r_tot - 1:2 * (self.n_r_tot - 1)]
        self.e_pol_axi[:, :,
                       2] = data[1::2,
                                 2 * (self.n_r_tot - 1):3 * (self.n_r_tot - 1)]
        self.e_pol_axi[:, :,
                       3] = data[1::2,
                                 3 * (self.n_r_tot - 1):4 * (self.n_r_tot - 1)]
        self.e_pol_axi[:, :,
                       4] = data[1::2,
                                 4 * (self.n_r_tot - 1):5 * (self.n_r_tot - 1)]
        self.e_pol_axi[:, :,
                       5] = data[1::2,
                                 5 * (self.n_r_tot - 1):6 * (self.n_r_tot - 1)]

        if avg:
            self.plotAvg()
Exemple #3
0
    def __init__(self, iplot=False, angle=10, pickleName='thHeat.pickle'):
        """
        :param iplot: a boolean to toggle the plots on/off
        :type iplot: bool
        :param angle: the integration angle in degrees
        :type angle: float
        :pickleName: calculations a
        """

        angle = angle * np.pi / 180

        if os.path.exists('tInitAvg'):
            file = open('tInitAvg', 'r')
            tstart = float(file.readline())
            file.close()
            logFiles = scanDir('log.*')
            tags = []
            for lg in logFiles:
                nml = MagicSetup(quiet=True, nml=lg)
                if nml.start_time >  tstart:
                    if os.path.exists('bLayersR.%s' % nml.tag):
                        tags.append(nml.tag)
            if len(tags) == 0:
                tags = [nml.tag]
                print('Only 1 tag: %s' % tags)
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])

            a = AvgField()
            self.nuss = a.nuss
        else:
            logFiles = scanDir('log.*')
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])


        if not os.path.exists(pickleName):
            # reading ATmov
            k = 0
            for tag in tags:
                file = 'ATmov.%s' % tag
                if os.path.exists(file):
                    if k == 0:
                        m = Movie(file=file, iplot=False)
                        print(file)
                    else:
                        m += Movie(file=file, iplot=False)
                        print(file)
                    k += 1

            # reading AHF_mov
            kk = 0
            for tag in tags:
                file = 'AHF_mov.%s' % tag
                if os.path.exists(file):
                    if kk == 0:
                        m1 = Movie(file=file, iplot=False)
                        print(file)
                    else:
                        m1 += Movie(file=file, iplot=False)
                        print(file)
                    kk += 1

            self.tempmean = m.data[0, ...].mean(axis=0)
            self.tempstd = m.data[0, ...].std(axis=0)
            self.colat = m.theta


            if kk > 0: # i.e. at least one AHF_mov file has been found
                self.fluxmean = m1.data[0, ...].mean(axis=0)
                self.fluxstd = m1.data[0, ...].std(axis=0)
            else:
                self.fluxmean = rderavg(self.tempmean, eta=self.radratio,
                                        exclude=False, spectral=False)
                self.fluxstd = rderavg(self.tempstd, eta=self.radratio,
                                        exclude=False, spectral=False)

            # Pickle saving
            file = open(pickleName, 'wb')
            pickle.dump([self.colat, self.tempmean, self.tempstd,\
                         self.fluxmean, self.fluxstd], file)
            file.close()
        else:
            file = open(pickleName, 'r')
            dat = pickle.load(file)
            if len(dat) == 5:
                self.colat, self.tempmean, self.tempstd, \
                            self.fluxmean, self.fluxstd = dat
            else:
                self.colat, self.tempmean, self.fluxmean = dat
                self.fluxstd = np.zeros_like(self.fluxmean)
                self.tempstd = np.zeros_like(self.fluxmean)
            file.close()

        self.ri = self.radratio/(1.-self.radratio)
        self.ro = 1./(1.-self.radratio)

        self.ntheta, self.nr = self.tempmean.shape
        self.radius = chebgrid(self.nr-1, self.ro, self.ri)
        th2D = np.zeros((self.ntheta, self.nr), dtype=self.radius.dtype)
        #self.colat = np.linspace(0., np.pi, self.ntheta)

        for i in range(self.ntheta):
            th2D[i, :] = self.colat[i]

        self.temprmmean = 0.5*simps(self.tempmean*np.sin(th2D), th2D, axis=0)
        self.temprmstd = 0.5*simps(self.tempstd*np.sin(th2D), th2D, axis=0)
        sinTh = np.sin(self.colat)
        d1 = matder(self.nr-1, self.ro, self.ri)

        # Conducting temperature profile (Boussinesq only!)
        self.tcond = self.ri*self.ro/self.radius-self.ri+self.temprmmean[0]
        self.fcond = -self.ri*self.ro/self.radius**2
        self.nusstopmean = self.fluxmean[:, 0] / self.fcond[0]
        self.nussbotmean = self.fluxmean[:, -1] / self.fcond[-1]
        self.nusstopstd = self.fluxstd[:, 0] / self.fcond[0]
        self.nussbotstd = self.fluxstd[:, -1] / self.fcond[-1]


        # Close to the equator
        mask2D = (th2D>=np.pi/2.-angle/2.)*(th2D<=np.pi/2+angle/2.)
        mask = (self.colat>=np.pi/2.-angle/2.)*(self.colat<=np.pi/2+angle/2.)
        fac = 1./simps(sinTh[mask], self.colat[mask])
        self.nussBotEq = fac*simps(self.nussbotmean[mask]*sinTh[mask], self.colat[mask])
        self.nussTopEq = fac*simps(self.nusstopmean[mask]*sinTh[mask], self.colat[mask])
        sinC = sinTh.copy()
        sinC[~mask] = 0.
        fac = 1./simps(sinC, self.colat)
        tempC = self.tempmean.copy()
        tempC[~mask2D] = 0.
        self.tempEqmean = fac*simps(tempC*np.sin(th2D), th2D, axis=0)
        tempC = self.tempstd.copy()
        tempC[~mask2D] = 0.
        self.tempEqstd = fac*simps(tempC*np.sin(th2D), th2D, axis=0)

        dtempEq = np.dot(d1, self.tempEqmean)
        self.betaEq = dtempEq[self.nr/2]

        # 45\deg inclination
        mask2D = (th2D>=np.pi/4.-angle/2.)*(th2D<=np.pi/4+angle/2.)
        mask = (self.colat>=np.pi/4.-angle/2.)*(self.colat<=np.pi/4+angle/2.)
        fac = 1./simps(np.sin(self.colat[mask]), self.colat[mask])
        nussBot45NH = fac*simps(self.nussbotmean[mask]*sinTh[mask], self.colat[mask])
        nussTop45NH = fac*simps(self.nusstopmean[mask]*sinTh[mask], self.colat[mask])
        sinC = sinTh.copy()
        sinC[~mask] = 0.
        fac = 1./simps(sinC, self.colat)
        tempC = self.tempmean.copy()
        tempC[~mask2D] = 0.
        temp45NH = fac*simps(tempC*np.sin(th2D), th2D, axis=0)

        mask2D = (th2D>=3.*np.pi/4.-angle/2.)*(th2D<=3.*np.pi/4+angle/2.)
        mask = (self.colat>=3.*np.pi/4.-angle/2.)*(self.colat<=3.*np.pi/4+angle/2.)
        fac = 1./simps(np.sin(self.colat[mask]), self.colat[mask])
        nussBot45SH = fac*simps(self.nussbotmean[mask]*sinTh[mask], self.colat[mask])
        nussTop45SH = fac*simps(self.nusstopmean[mask]*sinTh[mask], self.colat[mask])
        sinC = sinTh.copy()
        sinC[~mask] = 0.
        fac = 1./simps(sinC, self.colat)
        tempC = self.tempmean.copy()
        tempC[~mask2D] = 0.
        temp45SH = fac*simps(tempC*np.sin(th2D), th2D, axis=0)

        self.nussTop45 = 0.5*(nussTop45NH+nussTop45SH)
        self.nussBot45 = 0.5*(nussBot45NH+nussBot45SH)
        self.temp45 = 0.5*(temp45NH+temp45SH)

        dtemp45 = np.dot(d1, self.temp45)
        self.beta45 = dtemp45[self.nr/2]

        # Polar regions
        mask2D = (th2D<=angle/2.)
        mask = (self.colat<=angle/2.)
        fac = 1./simps(np.sin(self.colat[mask]), self.colat[mask])
        nussBotPoNH = fac*simps(self.nussbotmean[mask]*sinTh[mask], self.colat[mask])
        nussTopPoNH = fac*simps(self.nusstopmean[mask]*sinTh[mask], self.colat[mask])
        sinC = sinTh.copy()
        sinC[~mask] = 0.
        fac = 1./simps(sinC, self.colat)
        tempC = self.tempmean.copy()
        tempC[~mask2D] = 0.
        tempPolNHmean = fac*simps(tempC*np.sin(th2D), th2D, axis=0)
        tempC = self.tempstd.copy()
        tempC[~mask2D] = 0.
        tempPolNHstd = fac*simps(tempC*np.sin(th2D), th2D, axis=0)

        mask2D = (th2D>=np.pi-angle/2.)
        mask = (self.colat>=np.pi-angle/2.)
        fac = 1./simps(np.sin(self.colat[mask]), self.colat[mask])
        nussBotPoSH = fac*simps(self.nussbotmean[mask]*sinTh[mask], self.colat[mask])
        nussTopPoSH = fac*simps(self.nusstopmean[mask]*sinTh[mask], self.colat[mask])
        sinC = sinTh.copy()
        sinC[~mask] = 0.
        fac = 1./simps(sinC, self.colat)
        tempC = self.tempmean.copy()
        tempC[~mask2D] = 0.
        tempPolSHmean = fac*simps(tempC*np.sin(th2D), th2D, axis=0)
        tempC = self.tempstd.copy()
        tempC[~mask2D] = 0.
        tempPolSHstd = fac*simps(tempC*np.sin(th2D), th2D, axis=0)

        self.nussBotPo = 0.5*(nussBotPoNH+nussBotPoSH)
        self.nussTopPo = 0.5*(nussTopPoNH+nussTopPoSH)
        self.tempPolmean = 0.5*(tempPolNHmean+tempPolSHmean)
        self.tempPolstd= 0.5*(tempPolNHstd+tempPolSHstd)

        dtempPol = np.dot(d1, self.tempPolmean)
        self.betaPol = dtempPol[self.nr/2]


        # Inside and outside TC
        angleTC = np.arcsin(self.ri/self.ro)
        mask2D = (th2D<=angleTC)
        mask = (self.colat<=angleTC)
        fac = 1./simps(np.sin(self.colat[mask]), self.colat[mask])
        nussITC_NH = fac*simps(self.nusstopmean[mask]*sinTh[mask], self.colat[mask])

        mask2D = (th2D>=np.pi-angleTC)
        mask = (self.colat>=np.pi-angleTC)
        fac = 1./simps(np.sin(self.colat[mask]), self.colat[mask])
        nussITC_SH = fac*simps(self.nusstopmean[mask]*sinTh[mask], self.colat[mask])

        self.nussITC = 0.5*(nussITC_NH+nussITC_SH)

        mask2D = (th2D>=angleTC)*(th2D<=np.pi-angleTC)
        mask = (self.colat>=angleTC)*(self.colat<=np.pi-angleTC)
        fac = 1./simps(sinTh[mask], self.colat[mask])
        self.nussOTC = fac*simps(self.nusstopmean[mask]*sinTh[mask], self.colat[mask])

        if iplot:
            self.plot()

        print(self)
Exemple #4
0
    def __init__(self, iplot=False, angle=10, pickleName='thHeat.pickle'):
        """
        :param iplot: a boolean to toggle the plots on/off
        :type iplot: bool
        :param angle: the integration angle in degrees
        :type angle: float
        :pickleName: calculations a
        """

        angle = angle * np.pi / 180

        if os.path.exists('tInitAvg'):
            file = open('tInitAvg', 'r')
            tstart = float(file.readline())
            file.close()
            logFiles = scanDir('log.*')
            tags = []
            for lg in logFiles:
                nml = MagicSetup(quiet=True, nml=lg)
                if nml.start_time >  tstart:
                    if os.path.exists('bLayersR.%s' % nml.tag):
                        tags.append(nml.tag)
            if len(tags) == 0:
                tags = [nml.tag]
                print('Only 1 tag: %s' % tags)
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])

            a = AvgField()
            self.nuss = a.nuss
        else:
            logFiles = scanDir('log.*')
            MagicSetup.__init__(self, quiet=True, nml=logFiles[-1])
        

        if not os.path.exists(pickleName):
            # reading ATmov
            k = 0
            for tag in tags:
                file = 'ATmov.%s' % tag
                if os.path.exists(file):
                    if k == 0:
                        m = Movie(file=file, iplot=False)
                        print(file)
                    else:
                        m += Movie(file=file, iplot=False)
                        print(file)
                    k += 1

            # reading AHF_mov
            kk = 0
            for tag in tags:
                file = 'AHF_mov.%s' % tag
                if os.path.exists(file):
                    if kk == 0:
                        m1 = Movie(file=file, iplot=False)
                        print(file)
                    else:
                        m1 += Movie(file=file, iplot=False)
                        print(file)
                    kk += 1

            self.tempmean = m.data.mean(axis=0)
            self.colat = m.theta


            if kk > 0: # i.e. at least one AHF_mov file has been found
                self.flux = m1.data.mean(axis=0)
            else:
                self.flux = rderavg(self.tempmean, eta=self.radratio, 
                                exclude=False, spectral=False)

            # Pickle saving
            file = open(pickleName, 'wb')
            pickle.dump([self.colat, self.tempmean, self.flux], file)
            file.close()
        else:
            file = open(pickleName, 'r')
            self.colat, self.tempmean, self.flux = pickle.load(file)
            file.close()

        self.ri = self.radratio/(1.-self.radratio)
        self.ro = 1./(1.-self.radratio)

        self.ntheta, self.nr = self.tempmean.shape
        self.radius = chebgrid(self.nr-1, self.ro, self.ri)
        th2D = np.zeros((self.ntheta, self.nr), dtype=self.radius.dtype)
        #self.colat = np.linspace(0., np.pi, self.ntheta)

        for i in range(self.ntheta):
            th2D[i, :] = self.colat[i]

        self.temprm = 0.5*simps(self.tempmean*np.sin(th2D), th2D, axis=0)
        sinTh = np.sin(self.colat)
        d1 = matder(self.nr-1, self.ro, self.ri)

        # Conducting temperature profile (Boussinesq only!)
        self.tcond = self.ri*self.ro/self.radius-self.ri+self.temprm[0]
        self.fcond = -self.ri*self.ro/self.radius**2
        self.nusstop = self.flux[:, 0] / self.fcond[0]
        self.nussbot = self.flux[:, -1] / self.fcond[-1]

        # Close to the equator
        mask2D = (th2D>=np.pi/2.-angle/2.)*(th2D<=np.pi/2+angle/2.)
        mask = (self.colat>=np.pi/2.-angle/2.)*(self.colat<=np.pi/2+angle/2.)
        fac = 1./simps(sinTh[mask], self.colat[mask])
        self.nussBotEq = fac*simps(self.nussbot[mask]*sinTh[mask], self.colat[mask])
        self.nussTopEq = fac*simps(self.nusstop[mask]*sinTh[mask], self.colat[mask])
        sinC = sinTh.copy()
        sinC[~mask] = 0.
        fac = 1./simps(sinC, self.colat)
        tempC = self.tempmean.copy()
        tempC[~mask2D] = 0.
        self.tempEq = fac*simps(tempC*np.sin(th2D), th2D, axis=0)

        dtempEq = np.dot(d1, self.tempEq)
        self.betaEq = dtempEq[self.nr/2]

        # 45\deg inclination
        mask2D = (th2D>=np.pi/4.-angle/2.)*(th2D<=np.pi/4+angle/2.)
        mask = (self.colat>=np.pi/4.-angle/2.)*(self.colat<=np.pi/4+angle/2.)
        fac = 1./simps(np.sin(self.colat[mask]), self.colat[mask])
        nussBot45NH = fac*simps(self.nussbot[mask]*sinTh[mask], self.colat[mask])
        nussTop45NH = fac*simps(self.nusstop[mask]*sinTh[mask], self.colat[mask])
        sinC = sinTh.copy()
        sinC[~mask] = 0.
        fac = 1./simps(sinC, self.colat)
        tempC = self.tempmean.copy()
        tempC[~mask2D] = 0.
        temp45NH = fac*simps(tempC*np.sin(th2D), th2D, axis=0)

        mask2D = (th2D>=3.*np.pi/4.-angle/2.)*(th2D<=3.*np.pi/4+angle/2.)
        mask = (self.colat>=3.*np.pi/4.-angle/2.)*(self.colat<=3.*np.pi/4+angle/2.)
        fac = 1./simps(np.sin(self.colat[mask]), self.colat[mask])
        nussBot45SH = fac*simps(self.nussbot[mask]*sinTh[mask], self.colat[mask])
        nussTop45SH = fac*simps(self.nusstop[mask]*sinTh[mask], self.colat[mask])
        sinC = sinTh.copy()
        sinC[~mask] = 0.
        fac = 1./simps(sinC, self.colat)
        tempC = self.tempmean.copy()
        tempC[~mask2D] = 0.
        temp45SH = fac*simps(tempC*np.sin(th2D), th2D, axis=0)

        self.nussTop45 = 0.5*(nussTop45NH+nussTop45SH)
        self.nussBot45 = 0.5*(nussBot45NH+nussBot45SH)
        self.temp45 = 0.5*(temp45NH+temp45SH)

        dtemp45 = np.dot(d1, self.temp45)
        self.beta45 = dtemp45[self.nr/2]

        # Polar regions
        mask2D = (th2D<=angle/2.)
        mask = (self.colat<=angle/2.)
        fac = 1./simps(np.sin(self.colat[mask]), self.colat[mask])
        nussBotPoNH = fac*simps(self.nussbot[mask]*sinTh[mask], self.colat[mask])
        nussTopPoNH = fac*simps(self.nusstop[mask]*sinTh[mask], self.colat[mask])
        sinC = sinTh.copy()
        sinC[~mask] = 0.
        fac = 1./simps(sinC, self.colat)
        tempC = self.tempmean.copy()
        tempC[~mask2D] = 0.
        tempPolNH = fac*simps(tempC*np.sin(th2D), th2D, axis=0)

        mask2D = (th2D>=np.pi-angle/2.)
        mask = (self.colat>=np.pi-angle/2.)
        fac = 1./simps(np.sin(self.colat[mask]), self.colat[mask])
        nussBotPoSH = fac*simps(self.nussbot[mask]*sinTh[mask], self.colat[mask])
        nussTopPoSH = fac*simps(self.nusstop[mask]*sinTh[mask], self.colat[mask])
        sinC = sinTh.copy()
        sinC[~mask] = 0.
        fac = 1./simps(sinC, self.colat)
        tempC = self.tempmean.copy()
        tempC[~mask2D] = 0.
        tempPolSH = fac*simps(tempC*np.sin(th2D), th2D, axis=0)

        self.nussBotPo = 0.5*(nussBotPoNH+nussBotPoSH)
        self.nussTopPo = 0.5*(nussTopPoNH+nussTopPoSH)
        self.tempPol = 0.5*(tempPolNH+tempPolSH)

        dtempPol = np.dot(d1, self.tempPol)
        self.betaPol = dtempPol[self.nr/2]

        if iplot:
            self.plot()

        print(self)