def main(): # The basic core takes as input frames from the two camera viewpoints that look into the playing field # and learns proper kernels for recognizing the scene # This is a baseline to use as a pretrained classifier for recognizing entire playtypes in the advanced core global args, mylogger args = parser.parse_args() mylogger = MagnificentOracle() mylogger.set_log(logfile=args.log) mylogger.log("-dotted-line") EB = True postprocess = False IoU = False if not EB: if ("postprocess" not in args.log): if ("IoU" not in args.log): vp = viewpoint_classifier_ED(args.arch, path=args.dataset_path, viewpoints = args.viewpoints) train(int(args.epochs), vp) else: print("IoU scores per class") IoU() else: print("post-processing") post_process() else: vp = viewpoint_classifier_ED(args.arch, path=args.dataset_path, viewpoints = args.viewpoints) EB_extraction(vp)
def main(): global args, mylogger args = parser.parse_args() mylogger = MagnificentOracle() mylogger.set_log(logfile=args.log) mylogger.log("-dotted-line") pt = playtype_classifier() train(int(args.epochs), pt)
def main(): global args, mylogger args = parser.parse_args() mylogger = MagnificentOracle() mylogger.set_log(logfile=args.log) #mylogger.set_log(logfile=None) mylogger.log("-dotted-line") pt = playtype_classifier(dataset_index=int(args.dataset_index)) #train(int(args.epochs), pt) #final_expectation(pt) #acc_test(1,pt) # 91% testing acc at 48 epochs for binary, 85% testing acc at 48 epochs for trinary final_expectation_dataset(pt)
def main(): global mylogger mylogger = MagnificentOracle() mylogger.set_log(logfile=None) mylogger.log("-dotted-line") kmeans_init = True word2vec_init = True if word2vec_init: word2vec() elif kmeans_init: cluster_raw() else: c = clustering() c.run()
def main(): global args, mylogger args = parser.parse_args() mylogger = MagnificentOracle() mylogger.set_log(logfile=args.log) mylogger.log("-dotted-line") customset_test = CustomMasterDatasetPlays(path=args.dataset_path, subset_type="testing", dataset_index=0, categories="chunked") test_acc_loader = torch.utils.data.DataLoader(dataset=customset_test, batch_size=16, shuffle=False, num_workers=args.num_workers) print len(customset_test), len(test_acc_loader)
def main(): global args, mylogger args = parser.parse_args() mylogger = MagnificentOracle() mylogger.set_log(logfile=args.log) mylogger.log("-dotted-line") #ground_truth_files() pt = playtype_classifier() #print("All done") #IoU() #train(int(args.epochs), pt) #final_expectation(pt) #acc_test(1,pt) # 91% testing acc at 48 epochs for binary, 85% testing acc at 48 epochs for trinary final_expectation_dataset(pt)
def main(): # The basic core takes as input frames from the two camera viewpoints that look into the playing field # and learns proper kernels for recognizing the scene # This is a baseline to use as a pretrained classifier for recognizing entire playtypes in the advanced core global args, mylogger args = parser.parse_args() mylogger = MagnificentOracle() mylogger.set_log(logfile=args.log) mylogger.log("-dotted-line") # TO-DO vp = viewpoint_classifier_ED(args.arch, path=args.dataset_path, viewpoints=args.viewpoints) train(int(args.epochs), vp)
def main(): # The basic core takes as input frames from the two camera viewpoints that look into the playing field # and learns proper kernels for recognizing the scene # This is a baseline to use as a pretrained classifier for recognizing entire playtypes in the advanced core global args, mylogger args = parser.parse_args() mylogger = MagnificentOracle() mylogger.set_log(logfile=args.log) mylogger.log("-dotted-line") EB = False postprocess = False IoU_ = True if not EB: if not postprocess: if not IoU_: vp = viewpoint_classifier_ED(args.arch, path=args.dataset_path, viewpoints=args.viewpoints) train(int(args.epochs), vp) else: for folder in [ "ED32_vgg_frozen" ]: #["framewise","ED32","ED196","ED32_vgg_frozen"]: IoU(folder=folder) else: for folder in ["ED32_vgg_frozen" ]: #["framewise","ED32","ED196","ED32_vgg_frozen"]: print("post-processing") post_process(folder=folder) else: vp = viewpoint_classifier_ED(args.arch, path=args.dataset_path, viewpoints=args.viewpoints) EB_extraction(vp)