Exemple #1
0
    def test_cnn_train(self):
        # Get them labels!
        print(PROJECT_DIR)
        print(DATA_DIR)
        with io.open(DATA_DIR + '.labels', 'r') as f:
            labels = [line.rstrip('\n') for line in f]
            labels = list(set(labels))

        # Run the model

        model = Magpie()
        a = model.train_word2vec(DATA_DIR, vec_dim=300)
        print("done2")

        print("done3")
        model.init_word_vectors(DATA_DIR, vec_dim=300)
        model.train(DATA_DIR,
                    labels,
                    nn_model='cnn',
                    test_ratio=0.2,
                    epochs=30)
        path1 = PROJECT_DIR + '/here1.h5'
        path2 = PROJECT_DIR + '/embedinghere'
        path3 = PROJECT_DIR + '/scaler'
        model.save_word2vec_model(path2)
        model.save_scaler(path3, overwrite=True)
        model.save_model(path1)
        print("thuc hien test")

        # Do a simple prediction

        print(
            model.predict_from_text(
                'cho em hỏi về lịch khám của bác_sỹ đào việt_hằng và số điện_thoại'
            ))
Exemple #2
0
	def test_rnn_batch_train(self):
		# Get them labels!
		with io.open(DATA_DIR + '.labels', 'r') as f:
			labels = {line.rstrip('\n') for line in f}

		# Run the model
		model = Magpie()
		model.init_word_vectors(DATA_DIR, vec_dim=100)
		history = model.batch_train(DATA_DIR, labels, nn_model='rnn', epochs=3)
		assert history is not None

		# Do a simple prediction
		predictions = model.predict_from_text("Black holes are cool!")
		assert len(predictions) == len(labels)

		# Assert the hell out of it!
		for lab, val in predictions:
			assert lab in labels
			assert 0 <= val <= 1
Exemple #3
0
    def test_rnn_batch_train(self):
        # Get them labels!
        with io.open(DATA_DIR + '.labels', 'r') as f:
            labels = {line.rstrip('\n') for line in f}

        # Run the model
        model = Magpie()
        model.init_word_vectors(DATA_DIR, vec_dim=100)
        history = model.batch_train(DATA_DIR, labels, nn_model='rnn', epochs=3)
        assert history is not None

        # Do a simple prediction
        predictions = model.predict_from_text("Black holes are cool!")
        assert len(predictions) == len(labels)

        # Assert the hell out of it!
        for lab, val in predictions:
            assert lab in labels
            assert 0 <= val <= 1
Exemple #4
0
    '焦虑': 0,
    '怀疑': 0
}
client = pymongo.MongoClient(host='124.70.84.12', port=27017, username="******", password="******")
db = client['weibo_keyword_epidemic']
date = '2019-12-08'
with open('data/emotion_frequency.csv', 'a+', encoding='utf-8') as f:
    f.write('日期,满意,喜悦,乐观,愤怒,悲哀,恐惧,厌恶,焦虑,怀疑' + '\n')
while datetime.datetime.strptime(date, '%Y-%m-%d') <= datetime.datetime.strptime('2020-01-08', '%Y-%m-%d'):
    print(date)
    collection = db[date]
    documents_obj = collection.find({})
    for i in range(0, min(collection.count_documents({}), 3000)):
        # print(documents_obj[i]['text'])
        # 拿到每一条微博的情感分析结果
        res = magpie.predict_from_text(documents_obj[i]['text'])
        # 如果最大的数字小于0.75表明没有明显的情绪,跳过
        if res[0][1] < 0.75:
            continue
        # 第二大的数字比最大的数字小0.05以上则只保留第一个
        if res[0][1] - res[1][1] > 0.05:
            emotion_dict[res[0][0]] = emotion_dict[res[0][0]] + 1
            continue
        # 第三大的数字比第二大的数字小0.03以上则只保留前两个
        if res[1][1] - res[2][1] > 0.03:
            emotion_dict[res[0][0]] = emotion_dict[res[0][0]] + 1 / 2
            emotion_dict[res[1][0]] = emotion_dict[res[1][0]] + 1 / 2
            continue
        # 保留前三个
        emotion_dict[res[0][0]] = emotion_dict[res[0][0]] + 1 / 3
        emotion_dict[res[1][0]] = emotion_dict[res[1][0]] + 1 / 3
class StockPrediction:
    def __init__(self):
        File=open("stockLabels2.labels","r")
        List=[""]
        for Line in File:
            List.append(string.replace(Line,'\n',''))
        self.labels=List
        result =False
        
        path=os.path.join('','savedMagpieModels')
        latest_path='savedMagpieModels/'+find_latest(path)
        self.model=Magpie(keras_model=str(latest_path+'/model.h5'), 
                  word2vec_model=str(latest_path+'/embedding'),
                  scaler=str(latest_path+'/scaler'),
                  labels=self.labels)
      def delete_model(self):
        del self.model
        
    def load_model(self):
        print('loading model ...')
        result =False
        path=os.path.join('','savedMagpieModels')
        try:#error handeling must be added 
            latest_path='savedMagpieModels/'+find_latest(path)
            self.model=Magpie(keras_model=str(latest_path+'/model.h5'), 
                  word2vec_model=str(latest_path+'/embedding'),
                  scaler=str(latest_path+'/scaler'),
                  labels=self.labels)
            print('2222')
            result=True
            print('model loaded')
        except:
            print('ERR in stockPrediction.loadModel()')
        return result
    

        
    def create_stocks_bool_json(self, magpie_result):        
        REstock=re.compile(r'[A-Z]+')
        REprobability=re.compile(r'[0][.][0-9]+')
        stock_names=[]
        stock_probability=[]
        for stock in magpie_result:
            magpie_result_str=str(stock)
            listToks=magpie_result_str.split(',')
            stock_names.append(listToks[0][2:-1])
            stock_probability.append(float(listToks[1][1:-1]))
                     
        #boolList=[0]*len(self.labels)
        json_dict = {}
        data = []
        for i in stock_names:
            temp_dic={}
            labelIndex=str(self.labels.index(i))
            if i== 'JCY':
                r=0
            if stock_probability[stock_names.index(i)] >self.THRESHOLD:
                temp_dic["name"]=i
                temp_dic["index"]=labelIndex
                temp_dic["prediction"]=1                         
            else:
                temp_dic["name"]=i
                temp_dic["index"]=labelIndex
                temp_dic["prediction"]=0                
            data.append(temp_dic)
        json_dict["news_number"]=100
        json_dict["prediction"]=data        
        return json_dict
            
            
    def run(self,news, threshold):
        self.THRESHOLD=threshold
        output=self.model.predict_from_text(news)
        return self.create_stocks_bool_json(output)
from magpie import Magpie

with open('categories.labels') as f:
    labels = [line.rstrip() for line in f.readlines()]

magpie = Magpie(keras_model='current_model/model.h5',
                word2vec_model='current_model/embedding.pkl',
                scaler='current_model/scaler.pkl',
                labels=labels)

predicted = magpie.predict_from_text(
    '“Ich denke, Du wirst die Scheibe irgendwo innerhalb dieses Kreises treffen”.'
)
print(predicted[:5])
Exemple #7
0
from magpie import Magpie


magpie = Magpie(
keras_model =  'save/model/best.h5',
word2vec_model =  'save/embeddings/best',
scaler = 'save/scaler/best',
labels = ['1111', '1112', '1113', '1114', '1115', '1116', '1117', '1118', '1121', '1122', '1123', '1124', '1131', '1132', '1133', '1134', '1135', '1141', '1142', '1143', '1144', '1151', '1152', '1153', '1154', '1211', '1212', '1213', '1214', '1215', '1216', '1217', '1218', '1219', '1221', '1222', '1223', '1231', '1232', '1233', '1234', '1235', '1241', '1242', '1243', '1251', '1311', '1312', '1313', '1314', '1321', '1322', '1323', '1331', '1332', '1333', '1334', '1341', '1342', '1343', '1344', '1345', '1351', '1411', '1421', '1431', '1441', '15', '2111', '2112', '2113', '2114', '2115', '2116', '2117', '2121', '2122', '2123', '2124', '2131', '2132', '2133', '2134', '2141', '2142', '2143', '2144', '2145', '2146', '2147', '2148', '2149', '21410', '2151', '2152', '2153', '2154', '2155', '2156', '2161', '2162', '2163', '2164', '2165', '2166', '2167', '2168', '2171', '2172', '2173', '2174', '2175', '2176', '2177', '2178', '2179', '21710', '21711', '2181', '2182', '2183', '2184', '2185', '2186', '2187', '2188', '2191', '2192', '2193', '2194', '2195', '2196', '221', '222', '223', '224', '2311', '2312', '2313', '2314', '2315', '2316', '2321', '2322', '2323', '2324', '24', '31', '32', '33', '34', '41', '42', '43', '51', '52', '53', '54', '55', '56', '57', '58', '61', '7111', '7112', '7113', '7114', '7115', '7116', '7117', '7118', '7119', '71110', '71111', '7121', '7122', '7123', '7124', '7125', '7126', '7127', '7128', '7129', '7131', '7132', '7133', '7134', '7135', '7136', '7137', '7138', '7139', '71310', '71311', '71312', '7141', '7142', '7151', '721', '722', '723', '724', '7311', '7312', '7313', '7314', '7315', '7316', '7321', '7322', '7323', '7324', '7325', '7326', '7331', '7332', '7333', '7334', '7335', '7336', '734', '74'])
# 单条模拟测试数据

text1 = '我想买车票'
mag1 = magpie.predict_from_text(text1)
print(type(mag1))
print(mag1)




'''
#也可以通过从txt文件中读取测试数据进行批量测试
 mag2 = magpie.predict_from_file('data/hep-categories/1002413.txt')
 print(mag2)
'''

Exemple #8
0
from magpie import Magpie

magpie = Magpie()
magpie.init_word_vectors('data/hep-categories', vec_dim=100)
labels = [
    "Astrophysics",
    "Experiment-HEP",
    "Gravitation and Cosmology",
    "Phenomenology-HEP",
    "Theory-HEP",
]
magpie.train('data/hep-categories', labels, test_ratio=0.2, epochs=30)
print(magpie.predict_from_text('Stephen Hawking studies black holes'))
Exemple #9
0
import io
import os
import unittest

from magpie import Magpie
PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
DATA_DIR = os.path.join(PROJECT_DIR, 'data', 'hep-categories')

with io.open(DATA_DIR + '.labels', 'r') as f:
    labels = [line.rstrip('\n') for line in f]
    labels = list(set(labels))
print(len(labels))
print(labels)
path1 = PROJECT_DIR + '/here1.h5'
path2 = PROJECT_DIR + '/embedinghere'
path3 = PROJECT_DIR + '/scaler'

magpie = Magpie(keras_model=path1,
                word2vec_model=path2,
                scaler=path3,
                labels=labels)

predictions = magpie.predict_from_text(
    'toi bi dau bung kham benh het bao nhieu tien')
print(predictions[0], predictions[1], predictions[2])
def Deep_learning(df, x_test, target):
    folder = '/Users/sunxuan/Documents/PycharmProjects/ImpactPool/test_data/'
    for the_file in os.listdir(folder):
        file_path = os.path.join(folder, the_file)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
            # elif os.path.isdir(file_path): shutil.rmtree(file_path)
        except Exception as e:
            print(e)

    folder = '/Users/sunxuan/Documents/PycharmProjects/ImpactPool/test_data/categories/'
    for the_file in os.listdir(folder):
        file_path = os.path.join(folder, the_file)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
            # elif os.path.isdir(file_path): shutil.rmtree(file_path)
        except Exception as e:
            print(e)

    lab_list = []
    for i, row in df.iterrows():
        if i > len(df):
            break
        else:
            file_name = '/Users/sunxuan/Documents/PycharmProjects/ImpactPool/test_data/categories/' + str(
                i) + '.txt'
            lab_name = '/Users/sunxuan/Documents/PycharmProjects/ImpactPool/test_data/categories/' + str(
                i) + '.lab'

            title_data = df.at[i, target].encode('ascii',
                                                 'ignore').decode('ascii')

            with open(file_name, 'w') as the_file:
                the_file.write(title_data)

            row_data = eval(df.at[i, 'group_id'])
            for j in row_data:
                lab_list.append(j)
                with open(lab_name, 'a') as the_file:
                    the_file.write(str(j) + '\n')
    lab_set = list(set(lab_list))
    file = '/Users/sunxuan/Documents/PycharmProjects/ImpactPool/test_data/' + 'categories' + '.labels'
    for i in lab_set:
        with open(file, 'a') as the_file:
            the_file.write(str(i) + '\n')

    magpie = Magpie()
    # magpie.train_word2vec('/Users/sunxuan/Documents/PycharmProjects/ImpactPool/test_data/categories', vec_dim=100)
    # magpie.fit_scaler('/Users/sunxuan/Documents/PycharmProjects/ImpactPool/test_data/categories')

    magpie.init_word_vectors(
        '/Users/sunxuan/Documents/PycharmProjects/ImpactPool/test_data/categories',
        vec_dim=100)

    with open('test_data/categories.labels') as f:
        labels = f.readlines()
    labels = [x.strip() for x in labels]
    magpie.train(
        '/Users/sunxuan/Documents/PycharmProjects/ImpactPool/test_data/categories',
        labels,
        test_ratio=0.0,
        epochs=20)

    results_dl = {}

    df_test = pd.DataFrame(np.atleast_2d(x_test), columns=['title'])

    for i, row in df_test.iterrows():
        title_data = df_test.at[i, target].encode('ascii',
                                                  'ignore').decode('ascii')
        title_data = preprocess(title_data)
        # print("This is title: ", title_data)
        df_test.at[i, target] = title_data

        pre_label = [
            s[0] for s in magpie.predict_from_text(title_data) if s[1] >= 0.25
        ]
        # print("This is test: ", title_data)
        # print("This is predict label: ", pre_label)
        results_dl[title_data] = pre_label
    return results_dl
Exemple #11
0
    magpie = Magpie()
    magpie.init_word_vectors(
        '/home/ydm/ren/remote/multiLabel/data/hep-categories', vec_dim=100)

    print(len(labels))
    magpie.train('/home/ydm/ren/remote/multiLabel/data/hep-categories',
                 labels,
                 epochs=30,
                 batch_size=128)
    magpie.save_word2vec_model(
        '/home/ydm/ren/remote/multiLabel/data/word2vec_mode_place')
    magpie.save_scaler('/home/ydm/ren/remote/multiLabel/data/scaler_place',
                       overwrite=True)
    magpie.save_model('/home/ydm/ren/remote/multiLabel/data/model_place.h5')

    alltest = getlabel(
        '/home/ydm/ren/remote/multiLabel/data/allsents_test.txt')
    # alltest = [alltest]
    writes = open('/home/ydm/ren/remote/multiLabel/data/result_place.txt',
                  'w',
                  encoding='utf-8')

    for sent in alltest:
        # print(sent)
        pre_result = magpie.predict_from_text(sent)[:30]
        # print(pre_result)
        resultDict = {}
        for item in pre_result:
            resultDict[item[0]] = float(item[1])
        writes.write(json.dumps(resultDict) + '\n')