Exemple #1
0
def process(buffer):
    logger.debug("从web读取数据len:%r", len(buffer))
    if len(buffer) == 0: return False, "Image is null"
    data_array = np.frombuffer(buffer, dtype=np.uint8)
    image = cv2.imdecode(data_array, cv2.IMREAD_COLOR)
    if image is None:
        logger.error("图像解析失败")  #有可能从字节数组解析成图片失败
        return "图像角度探测失败"

    logger.debug("从字节数组变成图像的shape:%r", image.shape)

    global input_images, sess
    _classes = pred.pred(sess, classes, input_images, np.array([image]))
    return pred.CLASS_NAME[_classes[0]]
Exemple #2
0
def process(buffer, image_name):
    logger.debug("从web读取数据len:%r", len(buffer))

    if len(buffer) == 0: return False, "Image is null"

    #先给他转成ndarray(numpy的)
    data_array = np.frombuffer(buffer, dtype=np.uint8)

    #从ndarray中读取图片,有raw数据变成一个图片GBR数据
    #出来的数据,其实就是有维度了,就是原图的尺寸,如160x70
    image = cv2.imdecode(data_array, cv2.IMREAD_COLOR)[:, :, ::-1]
    # cv2.imwrite("test1.png",image) BGR
    # cv2.imwrite("test2.png",image[:,:,::-1]) RGB

    if image is None:
        logger.error("图像解析失败")  #有可能从字节数组解析成图片失败
        return False, None

    logger.debug("从字节数组变成图像的shape:%r", image.shape)

    result = ctpn.pred(sess_ctpn, [image], [image_name])

    for r in result:
        # 从opencv的np array格式,转成原始图像,再转成base64
        r['image'] = ocr_utils.tobase64(r['image'])

    # logger.debug("预测返回结果:%r",result[0])
    small_images = ocr_utils.crop_small_images(image, result[0]['boxes'])
    # small_images = small_images[:2]  # 测试用,为了提高测试速度,只处理2个
    all_txt = crnn.pred(small_images, sess_crnn)

    # 小框们的文本们
    result[0]['text'] = all_txt

    # 小框们的图片的base64
    result[0]['small_images'] = ocr_utils.tobase64(small_images)

    logger.debug("最终的预测结果为:%r", all_txt)
    # logger.debug("最终的预测的子图:%r",result[0]['small_images'])

    return True, result[0]
Exemple #3
0
def process(image, image_name="test.jpg", is_verbose=False):

    # result:[{
    #     name: 'xxx.png',
    #     'box': {
    #         [1, 1, 1, 1],
    #         [2, 2, 2, 2]
    #     },
    #     image : <draw image numpy array>,
    #     'f1': 0.78
    #     }
    # }, ]
    #global  crnn_sess,ctpn_sess
    result = ctpn.pred(ctpn_sess, [image], [image_name], ctpn_graph)

    # logger.debug("预测返回结果:%r",result[0])
    small_images = ocr_utils.crop_small_images(image, result[0]['boxes'])
    result[0]['text'] = process_crnn(small_images)  # 小框们的文本们

    # 仅仅调试CTPN
    # all_txt = ['']*len(small_images)

    # 返回原图和切出来的小图,这个是为了调试用
    if is_verbose:
        # 小框们的图片的base64
        result[0]['small_images'] = ocr_utils.nparray2base64(small_images)
        # 这个是为了,把图片再回显到网页上用
        for r in result:
            # 从opencv的np array格式,转成原始图像,再转成base64
            if r.get('image', None) is not None:
                logger.debug("返回的大图:%r", r['image'].shape)
                r['image'] = ocr_utils.nparray2base64(r['image'])
            else:
                logger.debug("返回大图为空")
        # logger.debug("最终的预测的子图:%r",result[0]['small_images'])

    return True, result[0]
Exemple #4
0
def main():
    input_images, classes = pred.init_model()
    sess = pred.restore_session()

    image_name_list = pred.get_images()
    pbar = tqdm(total=len(image_name_list))
    i = 0
    for image_name in image_name_list:
        start = time.time()
        logger.info("探测图片[%s]开始", image_name)
        pbar.update(1)
        try:
            img = cv2.imread(image_name)
            _classes = pred.pred(sess, classes, input_images, np.array([img]))
            if _classes[0] != 0:
                select_image(image_name, _classes[0])
        except Exception as e:
            traceback.print_exc()
            logger.error("处理图片[%s]发生错误:%s", image_name, str(e))
            continue
        i += 1
        logger.debug("处理完第%d张图片,耗时:%f", i, time.time() - start)

    pbar.close()