def test_model_saving_after_training(self): init_directories() model_name = "model_1" model = build_model(model_name) self.assertEqual(model.name, 'model_1') board, player = game_init() policies, values = model.predict(board) try: os.remove('test.h5') except: pass model.save('test.h5') self_play(model, n_games=2, mcts_simulations=32) train(model, game_model_name=model.name, epochs=2) self.assertEqual(model.name, 'model_2') policies2, values2 = model.predict(board) self.assertFalse(np.array_equal(values, values2)) self.assertFalse(np.array_equal(policies, policies2)) model3 = load_model('test.h5', custom_objects={'loss': loss}) policies3, values3 = model3.predict(board) self.assertTrue(np.array_equal(values, values3)) self.assertTrue(np.array_equal(policies, policies3)) os.remove('test.h5')
def setUp(self): init_directories() model_name = "model_1" model = create_initial_model(name=model_name) best_model = load_best_model() if best_model.name == model.name: train(model, game_model_name=best_model.name) evaluate(best_model, model) # We save wether or not it was a better model full_filename = os.path.join(conf['MODEL_DIR'], conf['BEST_MODEL']) model.save(full_filename) else: model = best_model self.model = model
def test_model_saving(self): init_directories() model_name = "model_1" model = build_model(model_name) board, player = game_init() policies, values = model.predict(board) try: os.remove('test.h5') except: pass model.save('test.h5') model2 = load_model('test.h5', custom_objects={'loss': loss}) policies2, values2 = model2.predict(board) self.assertTrue(np.array_equal(values, values2)) self.assertTrue(np.array_equal(policies, policies2)) os.remove('test.h5')
def setUp(self): init_directories() model_name = "model_1" best_model = load_best_model() self.model = best_model self.board, player = game_init()