Exemple #1
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-m', '--model', help='model name to save/load checkpoints')
    parser.add_argument('-c', '--checkpoint')

    args = parser.parse_args()

    model, misc = init(args.model, args.checkpoint)
    voc, checkpoint, ckpt_mng, model_config = (
        misc[k] for k in ['voc', 'checkpoint', 'ckpt_mng', 'model_config']
    )

    trainer_args = (model, ckpt_mng)

    kargs = config_to_kargs(model_config)

    if model_config.TRAINING_TASK == 'rate':
        Trainer = RankerTrainer
        kargs['rank_loss_type'] = model_config.RANK_LOSS_TYPE
        kargs['loss_lambda'] = model_config.LOSS_LAMBDA
    elif model_config.TRAINING_TASK == 'review':
        Trainer = ReviewTrainer
        kargs['voc'] = voc
    elif model_config.TRAINING_TASK == 'nrt':
        Trainer = NRTTaskTrainer
        kargs['loss_lambda'] = model_config.LOSS_LAMBDA
    else:
        Trainer = MultiTaskTrainer
        kargs['voc'] = voc
        kargs['loss_lambda'] = model_config.LOSS_LAMBDA
        kargs['rank_loss_type'] = model_config.RANK_LOSS_TYPE

    if 'rank_loss_type' in kargs and kargs['rank_loss_type']:
        kargs['grp_config'] = config.LOSS_TYPE_GRP_CONFIG[kargs['rank_loss_type']]

    print(f'Training config:', {k: v for k, v in kargs.items() if k in KARGS_LOG_KEYS})

    trainer = Trainer(
        *trainer_args,
        **kargs
    )

    if checkpoint:
        trainer.resume(checkpoint)

    train_dataset = load_dataset('train')
    dev_dataset = load_dataset('dev')

    # Ensure dropout layers are in train mode
    model.train()

    trainer.train(train_dataset, dev_dataset)
Exemple #2
0
def best(experiment):
    df = experiment.fetch_data().df
    best_arm_name = df.arm_name[df['mean'] == df['mean'].min()].values[0]
    best_arm = experiment.arms_by_name[best_arm_name]

    print(best_arm)

    dtype = torch.float
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    batch_size = 100
    train_dataloader, test_dataloader = load_dataset('data/aponc_sda.npz',
                                                     batch_size, device)

    combined_train_test_set = torch.utils.data.ConcatDataset([
        train_dataloader.dataset,
        test_dataloader.dataset,
    ])

    combined_train_test_loader = torch.utils.data.DataLoader(
        combined_train_test_set,
        batch_size=batch_size,
        shuffle=True,
    )

    net = train(train_dataloader, best_arm.parameters, device)

    test_mse_loss = test(test_dataloader, net)

    print('MSE loss (test set): %f' % (test_mse_loss))
Exemple #3
0
def train_test(parameterization):
    dtype = torch.float
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    batch_size = 100
    train_dataloader, test_dataloader = load_dataset('data/aponc_sda.npz',
                                                     batch_size, device)

    net = train(train_dataloader, parameterization, device)

    return test(test_dataloader, net)
Exemple #4
0
        self.best_mse = float("inf")
        self.population = []
        self.init_population()
        return self

    def write(self):
        pass

    def visualize(self):
        pass


if __name__ == "__main__":
    import main

    data = main.load_dataset("data/ripple_0.0_50_200")
    # init ga
    input_size = data.shape[1] - 1
    hidden_layer_size = 5
    output_size = 1
    population_size = 10
    selection_size = 4
    learning_rate = 1e-3
    epochs = 10
    generations = 10
    estimator = GeneticAlgorithm(
        True,
        input_size,
        hidden_layer_size,
        output_size,
        population_size,
Exemple #5
0
        self.f = ""
        self.learning_rate_decay_frequency = 99999999
        self.batch_size = 32
        self.num_epochs = 100
        self.n_epochs_valudations = 5
        self.loader_num_workers = 4
        self.pretrained_weights = "runs/Sep23_05-38-54_ai-servers-3css_vn_vanilla_v2/latest_checkpoint.pth"


opt = opt_config()

if __name__ == "__main__":

    opt = opt_config()

    trainset, testset = load_dataset(opt)
    texts = [t for t in trainset.get_all_texts()]
    model, optimizer = create_model_and_optimizer(
        opt, [t for t in trainset.get_all_texts()])
    rec_model = TIRGReconstructionModel(model,
                                        embed_dim=512,
                                        img_shape=[3, 120, 180]).cuda()

    pretrained_weights = torch.load("best_rec_model.pth")
    rec_model.load_state_dict(pretrained_weights)

    trainloader = trainset.get_loader(batch_size=opt.batch_size,
                                      shuffle=True,
                                      drop_last=True,
                                      num_workers=opt.loader_num_workers)
Exemple #6
0
        if all_target_captions[i].split()[0] in [c.split()[0] for c in nns[:k]]:
          r += 1
      r /= len(nn_result)
      out += [('recall_top' + str(k) + '_correct_adj', r)]

      r = 0.0
      for i, nns in enumerate(nn_result):
        if all_target_captions[i].split()[1] in [c.split()[1] for c in nns[:k]]:
          r += 1
      r /= len(nn_result)
      out += [('recall_top' + str(k) + '_correct_noun', r)]

  return out


if __name__ == '__main__':
  import main
  import img_text_composition_models

  opt = main.parse_opt()
  trainset, testset = main.load_dataset(opt)
  embed_dim = 512

  path = 'checkpoints/checkpoint_fashion200k.pth'
  device = torch.device('cpu')
  model = img_text_composition_models.TIRG(
          [t for t in trainset.get_all_texts()], embed_dim=embed_dim)
  checkpoint = torch.load(path, map_location=device)
  model.load_state_dict(checkpoint['model_state_dict'])
  model.eval()
  test(opt, model, testset)
Exemple #7
0
def work(data, out_json_filename, out_dot_filename):
    indexes = [i for i in range(len(data[0]) - 1)]
    tree = build_decision_tree(headers, indexes, data)

    # save tree to file
    jsonstr = json.dumps(tree)
    with open(out_json_filename, 'w') as f:
        f.write(jsonstr)

    dot.clear()
    generate_graph(-1, '<', tree, 0)
    dot.format = 'png'
    dot.view(out_dot_filename, 'missing_value_output')


if __name__ == '__main__':
    folder = 'data/'
    output_folder = "missing_value_output"
    train_data_filename = os.path.join(folder, 'gene_expression_with_missing_values.csv')

    headers, origin_data = load_dataset(train_data_filename)

    train_data_random = process_data_with_random(origin_data)
    work(train_data_random, os.path.join(output_folder, 'random.json'), "random.dot")

    train_data_average = process_data_with_average(origin_data)
    work(train_data_average, os.path.join(output_folder, 'average.json'), "average.dot")

    train_data_median = process_data_with_median(origin_data)
    work(train_data_median, os.path.join(output_folder, 'median.json'), "median.dot")
Exemple #8
0
import matplotlib.pyplot as plt
from scipy.stats import kendalltau
import seaborn as sns

if __name__ == '__main__':
    parser = ArgumentParser(description='Analyze the underground dataset')
    parser.add_argument('--dataset', required=True, type=str)

    args = parser.parse_args()
    location = args.dataset

    if not (path.exists(location) and path.isfile(location)):
        print("Please specify a valid path")
        exit(1)

    df = load_dataset(location)
    df = Filter.apply_all_filters(df)

    to_drop = [
        'worldwide', ' worldwide', '', 'you', 'world.', 'web', 'internet',
        'me on bmr', 'my email', 'torland', 'me', 'bmr', 'pm', 'world', 'bm',
        'foron', 'tor', 'the matrix', '------ worldwide', 'here', 'bmr pm',
        'my inbox', 'ww', 'email', 'my bmr pm', 'my computer', 'inbox', 'my',
        'my pc', 'my pm', 'digital download', 'optiman', 'cyberspace',
        'twilight zone', 'bettors paradise', 'international', 'bmr inbox',
        'darknet', 'undeclared',
        "atm's hack guides + biggest collection of ebooks/manuals",
        'the united snakes of captivity', 'entire world', 'eu', 'europe',
        'centre europe', 'midwest usa', 'korea, north', 'my bmr',
        'north korea', 'earth', 'asia', 'north america',
        'eu in sealed envelope', 'cherryflavor', 'www', 'browser',
Exemple #9
0
weight_path = "logs/20200509-143023/ResNet_8_weights/checkpoint"

def get_confusion_matrix(weight_path, data):
    (x_test, y_test) = data
    x_test = x_test[:500]
    y_test = y_test[:500]

    model = models.ResNet(depth=8)
    _ = model(x_test[0:2])
    model.load_weights(weight_path)

    predictions = model(x_test, training=False).numpy()
    predictions = tf.argmax(predictions, axis=1)
    labels = tf.argmax(y_test, axis=1)
    confusion_matrix = tf.math.confusion_matrix(labels=labels, predictions=predictions, num_classes=10, dtype=tf.float32)
    print(confusion_matrix)
    confusion_matrix = tf.transpose(tf.divide(tf.transpose(confusion_matrix), tf.reduce_sum(y_test, axis=0)))
    print(tf.reduce_sum(y_test, axis=0))
    return confusion_matrix.numpy()


(_, _), data = main.load_dataset()

matrix = get_confusion_matrix(weight_path=weight_path, data=data)
df_cm = pd.DataFrame(matrix, range(10), range(10))
sn.set(font_scale=1.4) # for label size
sn.heatmap(df_cm, annot=True, annot_kws={"size": 14}) # font size

plt.show()

Exemple #10
0
from os.path import dirname, join

from underthesea_flow.flow import Flow
from underthesea_flow.model import Model
from underthesea_flow.validation.validation import TrainTestSplitValidation

from main import load_dataset
from model.model_fasttext import FastTextClassifier
from models.fb_bank_2_act_fasttext.model_fasttext import FastTextPredictor

if __name__ == '__main__':
    data_file = join(dirname(dirname(dirname(dirname(__file__)))), "data",
                     "fb_bank_act", "corpus", "data.xlsx")
    X, y = load_dataset(data_file)

    flow = Flow()
    flow.log_folder = "log"

    flow.data(X, y)

    flow.add_model(Model(FastTextClassifier(), "FastText"))

    # flow.set_learning_curve(0.7, 1, 0.3)

    flow.set_validation(TrainTestSplitValidation(test_size=0.1))
    # flow.set_validation(CrossValidation(cv=5))

    # flow.validation()

    model_name = "FastText"
    model_filename = join("model", "fasttext.model")
Exemple #11
0
def main():
    opt = parse_opt()
    trainset, testset = load_dataset(opt)
    # input_img = input()
    embed_dim = 512

    # print(trainset[0])
    texts = [t for t in trainset.get_all_texts()]
    print(len(texts))
    path = 'checkpoints/checkpoint_fashion200k.pth'
    device = torch.device('cpu')

    vocab = SimpleVocab()
    for text in texts:
        vocab.add_text_to_vocab(text)

    vocab_size = vocab.get_size()

    model = img_text_composition_models.TIRG(vocab_size, embed_dim=embed_dim)
    checkpoint = torch.load(path, map_location=device)
    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval()

    texts = ['green linen-blend a-line dress']
    # x = vocab.encode_text(texts)

    in_dir = Path('./output/source')
    in_dir.mkdir(parents=True, exist_ok=True)

    input_img_path = Path(opt.dataset_path).joinpath(
        'women/dresses/casual_and_day_dresses/51727804/51727804_0.jpeg')

    with open(input_img_path, 'rb') as f:
        img = PIL.Image.open(f)
        img.save(str(in_dir.joinpath(input_img_path.parts[-1])))
        img = img.convert('RGB')
        print(input_img_path, str(in_dir.joinpath(input_img_path.parts[-1])))

    transform = torchvision.transforms.Compose([
        torchvision.transforms.Resize(224),
        torchvision.transforms.CenterCrop(224),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize([0.485, 0.456, 0.406],
                                         [0.229, 0.224, 0.225])
    ])
    img = transform(img).unsqueeze(0)
    # print(img.shape)
    # to tensor
    # img = torch.rand(1, 3, 256, 256)
    itexts = [vocab.encode_text(s) for s in texts]
    lengths = [len(t) for t in itexts]

    pitexts = torch.zeros((np.max(lengths), len(texts))).long()  # [T, B]
    for i in range(len(texts)):
        pitexts[:lengths[i], i] = torch.tensor(itexts[i])
    pitexts = pitexts.to(device)

    all_queries = model.compose_img_text(img, pitexts,
                                         lengths).data.cpu().numpy()

    # compute all image features
    if os.path.isfile('database.npy'):
        with open('database.npy', 'rb') as f:
            all_imgs = np.load(f)
    else:
        imgs = []
        all_imgs = []

        for i in tqdm(range(len(testset.imgs))):
            imgs += [testset.get_img(i)]
            if len(imgs) >= opt.batch_size or i == len(testset.imgs) - 1:
                if 'torch' not in str(type(imgs[0])):
                    imgs = [torch.from_numpy(d).float() for d in imgs]
                imgs = torch.stack(imgs).float()
                imgs = imgs.to(device)
                imgs = model.extract_img_feature(imgs).data.cpu().numpy()
                all_imgs += [imgs]
                imgs = []

        all_imgs = np.concatenate(all_imgs)
        with open('database.npy', 'wb') as f:
            np.save(f, all_imgs)

    # feature normalization
    for i in range(all_queries.shape[0]):
        all_queries[i, :] /= np.linalg.norm(all_queries[i, :])
    for i in range(all_imgs.shape[0]):
        all_imgs[i, :] /= np.linalg.norm(all_imgs[i, :])

    # match test queries to target images, get nearest neighbors
    top_n = 5
    sims = all_queries.dot(all_imgs.T)
    sims = np.squeeze(sims)
    nn_result = np.argsort(-sims)[:top_n]

    out_dir = Path('./output/target')
    out_dir.mkdir(parents=True, exist_ok=True)

    for n in nn_result:
        file_path = Path(opt.dataset_path).joinpath(
            testset.imgs[n]['file_path'])
        print(file_path)
        with open(file_path, 'rb') as f:
            img = PIL.Image.open(f)
            img.save(str(out_dir.joinpath(file_path.parts[-1])))