Exemple #1
0
def makeTemplate(rawData, numOffsCorrIters=1, decayTime=50, nSigmaTrig=4.0, isVerbose=False, isPlot=False, sigPass=1):
    """
    Make a matched filter template using a raw phase timestream
    INPUTS:
    rawData - noisy phase timestream with photon pulses
    numOffsCorrIters - number of pulse offset corrections to perform
    decayTime - approximate decay time of pulses (units: ticks)
    nSigmaTrig - threshold to detect pulse in terms of standard deviation of data
    isVerbose - print information about the template fitting process
    isPlot - plot information about Chi2 cut
    sigPass - std of data left after Chi2 cut

    OUTPUTS:
    finalTemplate - template of pulse shape
    time - use as x-axis when plotting template
    noiseSpectDict - dictionary containing noise spectrum and corresponding frequencies
    templateList - list of template itterations by correcting offsets
    peakIndices - list of peak indicies from rawData used for template
    """

    # hipass filter data to remove any baseline
    data = hpFilter(rawData)

    # trigger on pulses in data
    peakDict = sigmaTrigger(data, nSigmaTrig=nSigmaTrig, decayTime=decayTime, isVerbose=isVerbose)

    # remove pulses with additional triggers in the pulse window
    peakIndices = cutPulsePileup(peakDict["peakMaxIndices"], decayTime=decayTime, isVerbose=isVerbose)

    # remove pulses with a large chi squared value
    peakIndices = cutChiSquared(
        data, peakIndices, sigPass=sigPass, decayTime=decayTime, isVerbose=isVerbose, isPlot=isPlot
    )

    # Create rough template
    roughTemplate, time = averagePulses(data, peakIndices, decayTime=decayTime)

    # create noise spectrum from pre-pulse data for filter
    noiseSpectDict = mNS.makeWienerNoiseSpectrum(data, peakIndices, template=roughTemplate, isVerbose=isVerbose)

    # Correct for errors in peak offsets due to noise
    templateList = [roughTemplate]
    for i in range(numOffsCorrIters):
        peakIndices = correctPeakOffs(data, peakIndices, noiseSpectDict, roughTemplate, "wiener")
        # calculate a new corrected template
        roughTemplate, time = averagePulses(data, peakIndices, isoffset=True, decayTime=decayTime)
        templateList.append(roughTemplate)

    finalTemplate = roughTemplate

    return finalTemplate, time, noiseSpectDict, templateList, peakIndices
Exemple #2
0
    plt.show()
    
#####Test energy resolution with real data.  Assumes constant photon energy#####    
if False:
    isPlot=False
    isVerbose=False
    
    #extract raw data
    rawData = eRD.parseQDRPhaseSnap(os.path.join(os.getcwd(),'20140915/redLaser'),pixelNum=1,steps=30)
    rawTemplateData = rawData[0:1000000]
    rawTestData = rawData[1000000:2000000]
    #make template
    finalTemplate, time , noiseSpectrumDict, _ , tempPeakIndices = mT.makeTemplate(rawTemplateData,nSigmaTrig=4.,numOffsCorrIters=2,isVerbose=isVerbose,isPlot=isPlot)
    #fit to arbitrary pulse shape
    fittedTemplate, startFit, riseFit, fallFit = mT.makeFittedTemplate(finalTemplate,time,riseGuess=3.e-6,fallGuess=55.e-6)
    noiseSpectrumDictCovMat = mNS.makeWienerNoiseSpectrum(rawTemplateData, tempPeakIndices, 8000, 1000)
    #make matched filter
    matchedFilter=mF.makeMatchedFilter(finalTemplate, noiseSpectrumDictCovMat['noiseSpectrum'], nTaps=50, tempOffs=75)
    superMatchedFilter=mF.makeSuperMatchedFilter(finalTemplate, noiseSpectrumDictCovMat['noiseSpectrum'], fallFit, nTaps=50, tempOffs=75)

    #plot templates
    plt.plot(time,finalTemplate)
    plt.plot(time,fittedTemplate)
    plt.show()

    #filter data
    #data=mT.hpFilter(rawTestData) 
    data = rawTestData 
    #convolve with filter
    filteredData=np.convolve(data,matchedFilter,mode='same') 
    superFilteredData=np.convolve(data,superMatchedFilter,mode='same')