def main(result, data, redo, name_of_folder): common_result_path = result output_path = os.path.join(result, name_of_folder) exhaustive_approach_results_path = os.path.join(result, "exhaustive_approach") try: data_graph = nx.read_gpickle(data) except: data_graph = nx.read_gml(data) #data_graph=nx.read_gpickle(data) pattern = nx.read_gml(os.path.join(output_path, 'input_pattern.gml')) #load Plist pkl_file = open(os.path.join(output_path, 'Plist_base.pickle'), 'rb') Plist_base = pickle.load(pkl_file) #load monitoring marks pkl_file = open(os.path.join(output_path, 'monitoring_marks.pickle'), 'rb') monitoring_marks = pickle.load(pkl_file) #load monitoring_reports pkl_file = open(os.path.join(output_path, 'monitoring_reports.pickle'), 'rb') monitoring_reports = pickle.load(pkl_file) detailed_result_path = os.path.join(output_path, "monitoring") if (not redo) and os.path.exists(detailed_result_path) and len( os.listdir(detailed_result_path)) >= 120: row = csv_report.get_row(result, output_path, "false_furer", result.replace("RESULTS", "PATTERNS")) with open(os.path.join(output_path, name_of_folder + ".info"), 'w') as f: f.write(str(row)) sys.exit() pattern_file_name = common_result_path.split("/")[-1] if pattern_file_name == "": pattern_file_name = common_result_path.split("/")[-2] picklename = os.path.join(exhaustive_approach_results_path, "fdict_exhaustive_%s.pickle" % pattern_file_name) pickin = open(picklename, 'rb') fdict_exhaustive = pickle.load(pickin) approaches.globals_sampling.output_path = output_path if pattern_file_name.startswith("dblp"): approaches.globals_sampling.experiment_name = "dblp" else: approaches.globals_sampling.experiment_name = "yeast" my_version_report_online(fdict_exhaustive, data_graph, pattern, monitoring_marks, output_path, detailed_result_path, monitoring_reports, exhaustive_approach_results_path, Plist_base, 1, pattern_file_name) #print monitoring_reports row = csv_report.get_row(result, output_path, "false_furer", result.replace("RESULTS", "PATTERNS")) with open(os.path.join(output_path, name_of_folder + ".info"), 'w') as f: f.write(str(row))
def main(pattern_path, output_folder, result, data, redo, write, monitoring_reports): common_result_path = result output_path = os.path.join(result, output_folder) detailed_result_path = os.path.join(output_path, "monitoring") if (not redo) and os.path.exists(detailed_result_path) and len( os.listdir(detailed_result_path)) >= 100: row = csv_report.get_row(result, output_path, "furer", result.replace("RESULTS", "PATTERNS")) with open(os.path.join(output_path, "furer_row.info"), 'w') as f: f.write(str(row)) sys.exit() exhaustive_approach_results_path = os.path.join(common_result_path, "exhaustive_results") try: data_graph = nx.read_gpickle(data) except: data_graph = nx.read_gml(data) pattern = nx.read_gml(pattern_path) #load Plist pkl_file = open(os.path.join(output_path, 'Plist.pickle'), 'rb') Plist = pickle.load(pkl_file) #load monitoring marks pkl_file = open(os.path.join(output_path, 'monitoring_marks.pickle'), 'rb') monitoring_marks = pickle.load(pkl_file) #load monitoring_reports if os.path.exists(os.path.join(output_path, 'monitoring_reports.pickle')): pkl_file = open(os.path.join(output_path, 'monitoring_reports.pickle'), 'rb') monitoring_reports = pickle.load(pkl_file) pattern_file_name = common_result_path.split("/")[-1] if pattern_file_name == "": pattern_file_name = common_result_path.split("/")[-2] fdict_exhaustive = None if os.path.exists( os.path.join(exhaustive_approach_results_path, "fudict.pickle")): pickin = open( os.path.join(exhaustive_approach_results_path, "fudict.pickle")) fdict_exhaustive = pickle.load(pickin) approaches.globals_sampling.output_path = output_path my_version_report(fdict_exhaustive, data_graph, pattern, monitoring_marks, output_path, detailed_result_path, monitoring_reports, exhaustive_approach_results_path, Plist, 1, pattern_file_name, write) #print monitoring_reports row = csv_report.get_row(pattern_path, result, output_path, "furer", result.replace("RESULTS", "PATTERNS")) with open(os.path.join(output_path, "furer_row.info"), 'w') as f: f.write(str(row))
def main(result, data, redo, write, monitoring_reports): flag_version = 'my' common_result_path = result output_path = os.path.join(result, 'results_false_furer') exhaustive_approach_results_path = os.path.join(common_result_path, "exhaustive_approach") detailed_result_path = os.path.join(output_path, "monitoring") if (not redo) and os.path.exists(detailed_result_path) and len( os.listdir(detailed_result_path)) >= 120: print "Results already post-processed" row = csv_report.get_row(result, output_path, "false_furer", result.replace("RESULTS", "PATTERNS")) with open(os.path.join(output_path, "false_furer_row.info"), 'w') as f: f.write(str(row)) sys.exit() try: data_graph = nx.read_gpickle(data) except: data_graph = nx.read_gml(data) #data_graph=nx.read_gpickle(data) pattern = nx.read_gml(os.path.join(common_result_path, 'input_pattern.gml')) #load Plist pkl_file = open(os.path.join(output_path, 'Plist.pickle'), 'rb') Plist = pickle.load(pkl_file) #load monitoring marks pkl_file = open(os.path.join(output_path, 'monitoring_marks.pickle'), 'rb') monitoring_marks = pickle.load(pkl_file) #load monitoring_reports pattern_file_name = common_result_path.split("/")[-1] fdict_exhaustive = None if pattern_file_name == "": pattern_file_name = common_result_path.split("/")[-2] if os.path.exists(os.path.join(output_path, 'monitoring_reports.pickle')): pkl_file = open(os.path.join(output_path, 'monitoring_reports.pickle'), 'rb') monitoring_reports = pickle.load(pkl_file) if write == True: picklename = os.path.join( exhaustive_approach_results_path, "fdict_exhaustive_%s.pickle" % pattern_file_name) pickin = open(picklename, 'rb') fdict_exhaustive = pickle.load(pickin) print common_result_path.split("/") experiments.globals.output_path = output_path if pattern_file_name.startswith("dblp"): experiments.globals.experiment_name = "dblp" else: experiments.globals.experiment_name = "yeast" #smplr.complete_combinations(fdict_exhaustive, data_graph, pattern, Plist) # add zeros to all not present combinations #smplr.smooth(fdict_exhaustive, fdict_exhaustive) # Laplace smoothing also for the exhaustive #Report the results print "Monitoring report..." if (flag_version == 'my'): my_version_report(fdict_exhaustive, data_graph, pattern, monitoring_marks, output_path, detailed_result_path, monitoring_reports, exhaustive_approach_results_path, Plist, 1, pattern_file_name, write) #print monitoring_reports if (flag_version == 'martin'): martin_version_report(fdict_exhaustive, data_graph, pattern, monitoring_marks, output_path, detailed_result_path, monitoring_reports, exhaustive_approach_results_path, Plist, 1, pattern_file_name) #print monitoring_reports #report.report_monitoring(monitoring_marks,output_path,detailed_result_path,monitoring_reports,exhaustive_approach_results_path,data_graph,pattern,Plist,1,pattern_file_name) #print monitoring_reports row = csv_report.get_row(result, output_path, "false_furer", result.replace("RESULTS", "PATTERNS")) with open(os.path.join(output_path, "false_furer_row.info"), 'w') as f: f.write(str(row))
def main(result, data, redo, write, monitoring_reports): print "reporting furer" flag_version = 'my' common_result_path = result output_path = os.path.join(result, 'results_furer') detailed_result_path = os.path.join(output_path, "monitoring") if (not redo) and os.path.exists(detailed_result_path) and len( os.listdir(detailed_result_path)) >= 100: print "Results already post-processed" row = csv_report.get_row(result, output_path, "furer", result.replace("RESULTS", "PATTERNS")) with open(os.path.join(output_path, "furer_row.info"), 'w') as f: f.write(str(row)) sys.exit() exhaustive_approach_results_path = os.path.join(common_result_path, "exhaustive_approach") try: data_graph = nx.read_gpickle(data) except: data_graph = nx.read_gml(data) #data_graph=nx.read_gpickle(data) pattern = nx.read_gml(os.path.join(common_result_path, 'input_pattern.gml')) #load Plist pkl_file = open(os.path.join(output_path, 'Plist.pickle'), 'rb') Plist = pickle.load(pkl_file) #load monitoring marks pkl_file = open(os.path.join(output_path, 'monitoring_marks.pickle'), 'rb') monitoring_marks = pickle.load(pkl_file) #load monitoring_reports if os.path.exists(os.path.join(output_path, 'monitoring_reports.pickle')): pkl_file = open(os.path.join(output_path, 'monitoring_reports.pickle'), 'rb') monitoring_reports = pickle.load(pkl_file) print common_result_path, common_result_path.split("/") pattern_file_name = common_result_path.split("/")[-1] if pattern_file_name == "": pattern_file_name = common_result_path.split("/")[-2] print "Number of reports: ", len(monitoring_reports) print "pattern file name: ", pattern_file_name print "Do we need exhaustive dict: ", write fdict_exhaustive = None if write == True: picklename = os.path.join( exhaustive_approach_results_path, "fdict_exhaustive_%s.pickle" % pattern_file_name) pickin = open(picklename, 'rb') fdict_exhaustive = pickle.load(pickin) experiments.globals.output_path = output_path if pattern_file_name.startswith("dblp"): experiments.globals.experiment_name = "dblp" else: experiments.globals.experiment_name = "yeast" if (flag_version == 'my'): my_version_report(fdict_exhaustive, data_graph, pattern, monitoring_marks, output_path, detailed_result_path, monitoring_reports, exhaustive_approach_results_path, Plist, 1, pattern_file_name, write) #print monitoring_reports if (flag_version == 'martin'): martin_version_report(fdict_exhaustive, data_graph, pattern, monitoring_marks, output_path, detailed_result_path, monitoring_reports, exhaustive_approach_results_path, Plist, 1, pattern_file_name) #print monitoring_reports row = csv_report.get_row(result, output_path, "furer", result.replace("RESULTS", "PATTERNS")) with open(os.path.join(output_path, "furer_row.info"), 'w') as f: f.write(str(row))
def main(result, data, redo, exp, write, monitoring_reports): print "************************************** Reporting random for ", result, "*************************************************" flag_version = exp print "Running version: ", flag_version output_path = os.path.join(result, 'random_vertex_approach') common_result_path = result detailed_result_path = os.path.join(output_path, "monitoring") exhaustive_approach_results_path = os.path.join(common_result_path, "exhaustive_approach") if (not redo) and os.path.exists(detailed_result_path) and len( os.listdir(detailed_result_path)) >= 120: print "Results already post-processed" row = csv_report.get_row(result, output_path, "random", result.replace("RESULTS", "PATTERNS")) with open(os.path.join(output_path, "random_row.info"), 'w') as f: f.write(str(row)) sys.exit() try: data_graph = nx.read_gpickle(data) except: data_graph = nx.read_gml(data) #data_graph=nx.read_gpickle(data) pattern = nx.read_gml(os.path.join(common_result_path, 'input_pattern.gml')) with open(os.path.join(result, 'root_node.dec'), 'r') as f: for line in f.readlines(): root_node = int(line.split(" ")[0]) root_node_predicate_name = str( line.split(" ")[1].rstrip().lstrip()) break root_nodes = [ x for x in data_graph.nodes() if data_graph.node[x]['predicate'] == pattern.node[root_node]['predicate'] ] print "NR root nodeS: ", len(root_nodes) experiments.globals.nr_root_nodes = len(root_nodes) fdict_exhaustive = None pattern_file_name = common_result_path.split("/")[-1] if pattern_file_name == "": pattern_file_name = common_result_path.split("/")[-2] if os.path.exists(os.path.join(output_path, 'monitoring_reports.pickle')): pkl_file = open(os.path.join(output_path, 'monitoring_reports.pickle'), 'rb') monitoring_reports = pickle.load(pkl_file) if write == True: picklename = os.path.join( exhaustive_approach_results_path, "fdict_exhaustive_%s.pickle" % pattern_file_name) pickin = open(picklename, 'rb') fdict_exhaustive = pickle.load(pickin) print "Nr monitoring reports: ", len(monitoring_reports) #load Plist pkl_file = open(os.path.join(output_path, 'Plist.pickle'), 'rb') Plist = pickle.load(pkl_file) #load monitoring marks pkl_file = open(os.path.join(output_path, 'monitoring_marks.pickle'), 'rb') monitoring_marks = pickle.load(pkl_file) experiments.globals.output_path = output_path if pattern_file_name.startswith("dblp"): experiments.globals.experiment_name = "dblp" else: experiments.globals.experiment_name = "yeast" if (flag_version == 'my'): my_version_report(fdict_exhaustive, data_graph, pattern, monitoring_marks, output_path, detailed_result_path, monitoring_reports, exhaustive_approach_results_path, Plist, 1, pattern_file_name, write) #print monitoring_reports if (flag_version == 'martin'): martin_version_report(fdict_exhaustive, data_graph, pattern, monitoring_marks, output_path, detailed_result_path, monitoring_reports, exhaustive_approach_results_path, Plist, 1, pattern_file_name) #print monitoring_reports #smplr.complete_combinations(fdict_exhaustive, data_graph, pattern, Plist) # add zeros to all not present combinations #smplr.smooth(fdict_exhaustive, fdict_exhaustive) # Laplace smoothing also for the exhaustive #Report the results #print "Monitoring report..." #report.report_monitoring(monitoring_marks,output_path,detailed_result_path,monitoring_reports,exhaustive_approach_results_path,data_graph,pattern,Plist,1,pattern_file_name) #print monitoring_reports row = csv_report.get_row(result, output_path, "random", result.replace("RESULTS", "PATTERNS")) with open(os.path.join(output_path, "random_row.info"), 'w') as f: f.write(str(row))