def train(solver, data_arrays, label_arrays, mode='malis'):
    losses = []
    
    net = solver.net
    if mode == 'malis':
        nhood = malis.mknhood3d()
    if mode == 'euclid':
        nhood = malis.mknhood3d()
    if mode == 'malis_aniso':
        nhood = malis.mknhood3d_aniso()
    if mode == 'euclid_aniso':
        nhood = malis.mknhood3d_aniso()
        
    data_slice_cont = np.zeros((1,1,132,132,132), dtype=float32)
    label_slice_cont  = np.zeros((1,1,44,44,44), dtype=float32)
    aff_slice_cont = np.zeros((1,3,44,44,44), dtype=float32)
    nhood_cont = np.zeros((1,1,3,3), dtype=float32)
    error_scale_cont = np.zeros((1,1,44,44,44), dtype=float32)
    
    dummy_slice = np.ascontiguousarray([0]).astype(float32)
    
    # Loop from current iteration to last iteration
    for i in range(solver.iter, solver.max_iter):
        
        # First pick the dataset to train with
        dataset = randint(0, len(data_arrays) - 1)
        data_array = data_arrays[dataset]
        label_array = label_arrays[dataset]
        # affinity_array = affinity_arrays[dataset]
        
        offsets = []
        for j in range(0, dims):
            offsets.append(randint(0, data_array.shape[j] - (config.output_dims[j] + config.input_padding[j])))
        
        
        # These are the raw data elements
        data_slice = slice_data(data_array, offsets, [config.output_dims[di] + config.input_padding[di] for di in range(0, dims)])
        
        # These are the labels (connected components)
        label_slice = slice_data(label_array, [offsets[di] + int(math.ceil(config.input_padding[di] / float(2))) for di in range(0, dims)], config.output_dims)
        
        # These are the affinity edge values
        # Also recomputing the corresponding labels (connected components)
        aff_slice = malis.seg_to_affgraph(label_slice,nhood)
        label_slice,ccSizes = malis.connected_components_affgraph(aff_slice,nhood)

        print (data_slice[None, None, :]).shape
        print (label_slice[None, None, :]).shape
        print (aff_slice[None, :]).shape
        print (nhood).shape
        
        if mode == 'malis':
            np.copyto(data_slice_cont, np.ascontiguousarray(data_slice[None, None, :]).astype(float32))
            np.copyto(label_slice_cont, np.ascontiguousarray(label_slice[None, None, :]).astype(float32))
            np.copyto(aff_slice_cont, np.ascontiguousarray(aff_slice[None, :]).astype(float32))
            np.copyto(nhood_cont, np.ascontiguousarray(nhood[None, None, :]).astype(float32))
            
            net.set_input_arrays(0, data_slice_cont, dummy_slice)
            net.set_input_arrays(1, label_slice_cont, dummy_slice)
            net.set_input_arrays(2, aff_slice_cont, dummy_slice)
            net.set_input_arrays(3, nhood_cont, dummy_slice)
            
        # We pass the raw and affinity array only
        if mode == 'euclid':
            net.set_input_arrays(0, np.ascontiguousarray(data_slice[None, None, :]).astype(float32), np.ascontiguousarray(dummy_slice).astype(float32))
            net.set_input_arrays(1, np.ascontiguousarray(aff_slice[None, :]).astype(float32), np.ascontiguousarray(dummy_slice).astype(float32))
            net.set_input_arrays(2, np.ascontiguousarray(error_scale(aff_slice[None, :],1.0,0.045)).astype(float32), np.ascontiguousarray(dummy_slice).astype(float32))

        if mode == 'softmax':
            net.set_input_arrays(0, np.ascontiguousarray(data_slice[None, None, :]).astype(float32), np.ascontiguousarray(dummy_slice).astype(float32))
            net.set_input_arrays(1, np.ascontiguousarray(label_slice[None, None, :]).astype(float32), np.ascontiguousarray(dummy_slice).astype(float32))
        
        # Single step
        loss = solver.step(1)

        # Memory clean up and report
        print("Memory usage (before GC): %d MiB" % ((resource.getrusage(resource.RUSAGE_SELF).ru_maxrss) / (1024)))
        
        while gc.collect():
            pass

        print("Memory usage (after GC): %d MiB" % ((resource.getrusage(resource.RUSAGE_SELF).ru_maxrss) / (1024)))


        # m = volume_slicer.VolumeSlicer(data=np.squeeze((net.blobs['Convolution18'].data[0])[0,:,:]))
        # m.configure_traits()

        print("Loss: %s" % loss)
        losses += [loss]
Exemple #2
0
import numpy as np
import h5py
import datetime
np.set_printoptions(precision=4)
import malis as m


print "Can we make the `nhood' for an isotropic 3d dataset"
print "corresponding to a 6-connected neighborhood?"
nhood = m.mknhood3d(1)
print nhood

print "Can we make the `nhood' for an anisotropic 3d dataset"
print "corresponding to a 4-connected neighborhood in-plane"
print "and 26-connected neighborhood in the previous z-plane?"
nhood = m.mknhood3d_aniso(1,1.8)
print nhood

segTrue = np.array([0, 1, 1, 1, 2, 2, 0, 5, 5, 5, 5],dtype=np.uint64);
node1 = np.arange(segTrue.shape[0]-1,dtype=np.uint64)
node2 = np.arange(1,segTrue.shape[0],dtype=np.uint64)
nVert = segTrue.shape[0]
edgeWeight = np.array([0, 1, 2, 0, 2, 0, 0, 1, 2, 2.5],dtype=np.float32);
edgeWeight = edgeWeight/edgeWeight.max()
print segTrue
print edgeWeight

nPairPos = m.malis_loss_weights(segTrue, node1, node2, edgeWeight, 1)
nPairNeg = m.malis_loss_weights(segTrue, node1, node2, edgeWeight, 0)
print np.vstack((nPairPos,nPairNeg))
# print nPairNeg
Exemple #3
0
import numpy as np
import h5py
import datetime
np.set_printoptions(precision=4)
import malis as m

print("Can we make the `nhood' for an isotropic 3d dataset")
print("corresponding to a 6-connected neighborhood?")
nhood = m.mknhood3d(1)
print(nhood)

print("Can we make the `nhood' for an anisotropic 3d dataset")
print("corresponding to a 4-connected neighborhood in-plane")
print("and 26-connected neighborhood in the previous z-plane?")
nhood = m.mknhood3d_aniso(1, 1.8)
print(nhood)

segTrue = np.array([0, 1, 1, 1, 2, 2, 0, 5, 5, 5, 5], dtype=np.uint64)
node1 = np.arange(segTrue.shape[0] - 1, dtype=np.uint64)
node2 = np.arange(1, segTrue.shape[0], dtype=np.uint64)
print("####################")
print(node1)
print(node2)

nVert = segTrue.shape[0]
edgeWeight = np.array([0, 1, 2, 0, 2, 0, 0, 1, 2, 2.5], dtype=np.float32)
edgeWeight = edgeWeight / edgeWeight.max()
print(segTrue)
print(edgeWeight)

nPairPos = m.malis_loss_weights(segTrue, node1, node2, edgeWeight, 1)
Exemple #4
0
def train(solver, data_arrays, label_arrays, mode='malis'):
    losses = []

    net = solver.net
    if mode == 'malis':
        nhood = malis.mknhood3d()
    if mode == 'euclid':
        nhood = malis.mknhood3d()
    if mode == 'malis_aniso':
        nhood = malis.mknhood3d_aniso()
    if mode == 'euclid_aniso':
        nhood = malis.mknhood3d_aniso()

    data_slice_cont = np.zeros((1, 1, 132, 132, 132), dtype=float32)
    label_slice_cont = np.zeros((1, 1, 44, 44, 44), dtype=float32)
    aff_slice_cont = np.zeros((1, 3, 44, 44, 44), dtype=float32)
    nhood_cont = np.zeros((1, 1, 3, 3), dtype=float32)
    error_scale_cont = np.zeros((1, 1, 44, 44, 44), dtype=float32)

    dummy_slice = np.ascontiguousarray([0]).astype(float32)

    # Loop from current iteration to last iteration
    for i in range(solver.iter, solver.max_iter):

        # First pick the dataset to train with
        dataset = randint(0, len(data_arrays) - 1)
        data_array = data_arrays[dataset]
        label_array = label_arrays[dataset]
        # affinity_array = affinity_arrays[dataset]

        offsets = []
        for j in range(0, dims):
            offsets.append(
                randint(
                    0, data_array.shape[j] -
                    (config.output_dims[j] + config.input_padding[j])))

        # These are the raw data elements
        data_slice = slice_data(data_array, offsets, [
            config.output_dims[di] + config.input_padding[di]
            for di in range(0, dims)
        ])

        # These are the labels (connected components)
        label_slice = slice_data(label_array, [
            offsets[di] + int(math.ceil(config.input_padding[di] / float(2)))
            for di in range(0, dims)
        ], config.output_dims)

        # These are the affinity edge values
        # Also recomputing the corresponding labels (connected components)
        aff_slice = malis.seg_to_affgraph(label_slice, nhood)
        label_slice, ccSizes = malis.connected_components_affgraph(
            aff_slice, nhood)

        print(data_slice[None, None, :]).shape
        print(label_slice[None, None, :]).shape
        print(aff_slice[None, :]).shape
        print(nhood).shape

        if mode == 'malis':
            np.copyto(
                data_slice_cont,
                np.ascontiguousarray(data_slice[None,
                                                None, :]).astype(float32))
            np.copyto(
                label_slice_cont,
                np.ascontiguousarray(label_slice[None,
                                                 None, :]).astype(float32))
            np.copyto(aff_slice_cont,
                      np.ascontiguousarray(aff_slice[None, :]).astype(float32))
            np.copyto(
                nhood_cont,
                np.ascontiguousarray(nhood[None, None, :]).astype(float32))

            net.set_input_arrays(0, data_slice_cont, dummy_slice)
            net.set_input_arrays(1, label_slice_cont, dummy_slice)
            net.set_input_arrays(2, aff_slice_cont, dummy_slice)
            net.set_input_arrays(3, nhood_cont, dummy_slice)

        # We pass the raw and affinity array only
        if mode == 'euclid':
            net.set_input_arrays(
                0,
                np.ascontiguousarray(data_slice[None,
                                                None, :]).astype(float32),
                np.ascontiguousarray(dummy_slice).astype(float32))
            net.set_input_arrays(
                1,
                np.ascontiguousarray(aff_slice[None, :]).astype(float32),
                np.ascontiguousarray(dummy_slice).astype(float32))
            net.set_input_arrays(
                2,
                np.ascontiguousarray(
                    error_scale(aff_slice[None, :], 1.0,
                                0.045)).astype(float32),
                np.ascontiguousarray(dummy_slice).astype(float32))

        if mode == 'softmax':
            net.set_input_arrays(
                0,
                np.ascontiguousarray(data_slice[None,
                                                None, :]).astype(float32),
                np.ascontiguousarray(dummy_slice).astype(float32))
            net.set_input_arrays(
                1,
                np.ascontiguousarray(label_slice[None,
                                                 None, :]).astype(float32),
                np.ascontiguousarray(dummy_slice).astype(float32))

        # Single step
        loss = solver.step(1)

        # Memory clean up and report
        print("Memory usage (before GC): %d MiB" %
              ((resource.getrusage(resource.RUSAGE_SELF).ru_maxrss) / (1024)))

        while gc.collect():
            pass

        print("Memory usage (after GC): %d MiB" %
              ((resource.getrusage(resource.RUSAGE_SELF).ru_maxrss) / (1024)))

        # m = volume_slicer.VolumeSlicer(data=np.squeeze((net.blobs['Convolution18'].data[0])[0,:,:]))
        # m.configure_traits()

        print("Loss: %s" % loss)
        losses += [loss]