Exemple #1
0
def _normalize_one_spectrum(single_spectrum_ws, spline, instrument):
    rebinned_spline = mantid.RebinToWorkspace(
        WorkspaceToRebin=spline,
        WorkspaceToMatch=single_spectrum_ws,
        StoreInADS=False)
    divided = mantid.Divide(LHSWorkspace=single_spectrum_ws,
                            RHSWorkspace=rebinned_spline,
                            StoreInADS=False)
    if instrument.get_instrument_prefix() == "GEM":
        values_replaced = mantid.ReplaceSpecialValues(InputWorkspace=divided,
                                                      NaNValue=0,
                                                      StoreInADS=False)
        # crop based off max between 1000 and 2000 tof as the vanadium peak on Gem will always occur here
        complete = _crop_spline_to_percent_of_max(rebinned_spline,
                                                  values_replaced,
                                                  single_spectrum_ws, 1000,
                                                  2000)
    else:
        complete = mantid.ReplaceSpecialValues(
            InputWorkspace=divided,
            NaNValue=0,
            OutputWorkspace=single_spectrum_ws)

    if instrument.perform_abs_vanadium_norm():
        vanadium_material = spline.sample().getMaterial()
        v_number_density = vanadium_material.numberDensityEffective
        v_cross_section = vanadium_material.totalScatterXSection()
        vanadium_shape = spline.sample().getShape()
        # number density in Angstroms-3, volume in m3. Don't bother with 1E30 factor because will cancel
        num_v_atoms = vanadium_shape.volume() * v_number_density

        sample_material = single_spectrum_ws.sample().getMaterial()
        sample_number_density = sample_material.numberDensityEffective
        sample_shape = spline.sample().getShape()
        num_sample_atoms = sample_shape.volume() * sample_number_density

        abs_norm_factor = v_cross_section * num_v_atoms / \
                          (num_sample_atoms * 4 * math.pi)
        logger.notice(
            "Performing absolute normalisation, multiplying by factor=" +
            str(abs_norm_factor))
        # avoid "Variable invalidated, data has been deleted" error when debugging
        output_ws_name = single_spectrum_ws.name()
        abs_norm_factor_ws = mantid.CreateSingleValuedWorkspace(
            DataValue=abs_norm_factor, OutputWorkspace="__abs_norm_factor_ws")
        complete = mantid.Multiply(LHSWorkspace=complete,
                                   RHSWorkspace=abs_norm_factor_ws,
                                   OutputWorkspace=output_ws_name)

    return complete
Exemple #2
0
def _divide_one_spectrum_by_spline(spectrum, spline, instrument):
    rebinned_spline = mantid.RebinToWorkspace(WorkspaceToRebin=spline, WorkspaceToMatch=spectrum, StoreInADS=False)
    if instrument.get_instrument_prefix() == "GEM":
        divided = mantid.Divide(LHSWorkspace=spectrum, RHSWorkspace=rebinned_spline, OutputWorkspace=spectrum,
                                StoreInADS=False)
        complete = mantid.ReplaceSpecialValues(InputWorkspace=divided, NaNValue=0, StoreInADS=False)
        # crop based off max between 1000 and 2000 tof as the vanadium peak on Gem will always occur here
        return _crop_spline_to_percent_of_max(rebinned_spline, complete, spectrum, 1000, 2000)

    divided = mantid.Divide(LHSWorkspace=spectrum, RHSWorkspace=rebinned_spline,
                            StoreInADS=False)
    complete = mantid.ReplaceSpecialValues(InputWorkspace=divided, NaNValue=0, OutputWorkspace=spectrum)

    return complete
Exemple #3
0
def _run_focus(input_workspace,
               tof_output_name,
               vanadium_integration_ws,
               vanadium_curves_ws,
               df_kwarg,
               full_calib,
               region_calib):
    simple.NormaliseByCurrent(InputWorkspace=input_workspace, OutputWorkspace=input_workspace)
    input_workspace /= vanadium_integration_ws
    simple.ReplaceSpecialValues(InputWorkspace=input_workspace, OutputWorkspace=input_workspace, NaNValue=0,
                                InfinityValue=0)
    simple.ApplyDiffCal(InstrumentWorkspace=input_workspace, CalibrationWorkspace=full_calib)
    ws_d = simple.ConvertUnits(InputWorkspace=input_workspace, Target='dSpacing')
    focused_sample = simple.DiffractionFocussing(InputWorkspace=ws_d, **df_kwarg)
    curves_rebinned = simple.RebinToWorkspace(WorkspaceToRebin=vanadium_curves_ws, WorkspaceToMatch=focused_sample)
    normalised = simple.Divide(LHSWorkspace=focused_sample, RHSWorkspace=curves_rebinned,
                               AllowDifferentNumberSpectra=True)
    simple.ApplyDiffCal(InstrumentWorkspace=normalised, CalibrationWorkspace=region_calib)
    dspacing_output_name = tof_output_name + "_dSpacing"
    simple.CloneWorkspace(InputWorkspace=normalised, OutputWorkspace=dspacing_output_name)
    simple.ConvertUnits(InputWorkspace=normalised, OutputWorkspace=tof_output_name, Target='TOF')
    simple.DeleteWorkspace(curves_rebinned)
    simple.DeleteWorkspace(focused_sample)
    simple.DeleteWorkspace(normalised)
    simple.DeleteWorkspace(ws_d)
Exemple #4
0
 def apply_vanadium_corrections(self, cyclevana, i, focused_ws):
     simple.LoadNexusProcessed(Filename=self.get_vanadium(i, cyclevana),
                               OutputWorkspace="vana")
     simple.RebinToWorkspace(WorkspaceToRebin="vana",
                             WorkspaceToMatch=focused_ws,
                             OutputWorkspace="vana")
     simple.Divide(LHSWorkspace=focused_ws,
                   RHSWorkspace="vana",
                   OutputWorkspace=focused_ws)
     simple.DeleteWorkspace("vana")
     simple.ConvertUnits(InputWorkspace=focused_ws,
                         OutputWorkspace=focused_ws,
                         Target="TOF",
                         EMode="Elastic")
     simple.ReplaceSpecialValues(InputWorkspace=focused_ws,
                                 OutputWorkspace=focused_ws,
                                 NaNValue=0.0,
                                 NaNError=0.0,
                                 InfinityValue=0.0,
                                 InfinityError=0.0)
Exemple #5
0
def _apply_vanadium_norm(sample_ws_foc, van_ws_foc):
    # divide by curves - automatically corrects for solid angle, det efficiency and lambda dep. flux
    sample_ws_foc = mantid.CropWorkspace(InputWorkspace=sample_ws_foc,
                                         OutputWorkspace=sample_ws_foc.name(),
                                         XMin=0.45)
    van_ws_foc_rb = mantid.RebinToWorkspace(
        WorkspaceToRebin=van_ws_foc,
        WorkspaceToMatch=sample_ws_foc,
        OutputWorkspace=VAN_CURVE_REBINNED_NAME)  # copy so as not to lose data
    sample_ws_foc = mantid.Divide(LHSWorkspace=sample_ws_foc,
                                  RHSWorkspace=van_ws_foc_rb,
                                  OutputWorkspace=sample_ws_foc.name(),
                                  AllowDifferentNumberSpectra=False)
    sample_ws_foc = mantid.ReplaceSpecialValues(
        InputWorkspace=sample_ws_foc,
        OutputWorkspace=sample_ws_foc.name(),
        NaNValue=0,
        NaNError=0.0,
        InfinityValue=0,
        InfinityError=0.0)
    return sample_ws_foc
Exemple #6
0
def Norm_data(rnum, cycle):
    # Load and normalize SX data
    mantid.LoadRaw(
        Filename='/archive/Instruments$/NDXWISH/Instrument/data/cycle_' +
        cycle + '/WISH000' + str(rnum) + '.raw',
        OutputWorkspace='WISH000' + str(rnum),
        LoadMonitors='Separate')
    # ConvertToEventWorkspace(InputWorkspace='WISH000'+str(rnum), OutputWorkspace='WISH000'+str(rnum))
    mantid.CropWorkspace(InputWorkspace='WISH000' + str(rnum),
                         OutputWorkspace='WISH000' + str(i),
                         XMin=6000,
                         XMax=99000)
    mantid.ConvertUnits(InputWorkspace='WISH000' + str(rnum),
                        OutputWorkspace='WISH000' + str(rnum),
                        Target='Wavelength')
    mantid.NormaliseByCurrent(InputWorkspace='WISH000' + str(rnum),
                              OutputWorkspace='WISH000' + str(rnum))
    # normalize By vanadium PredictPeaks
    mantid.CropWorkspace(InputWorkspace='WISH000' + str(rnum),
                         OutputWorkspace='WISH000' + str(rnum),
                         XMin=0.75,
                         XMax=9.3)
    mantid.RebinToWorkspace(WorkspaceToRebin='Vana_smoot1',
                            WorkspaceToMatch='WISH000' + str(rnum),
                            OutputWorkspace='Vana_smoot1')
    mantid.Divide(LHSWorkspace='WISH000' + str(rnum),
                  RHSWorkspace='Vana_smoot1',
                  OutputWorkspace='WISH000' + str(rnum))
    # remove spike in the data above 1e15 and -1e15
    mantid.ReplaceSpecialValues(InputWorkspace='WISH000' + str(rnum),
                                OutputWorkspace='WISH000' + str(rnum),
                                NaNValue=0,
                                InfinityValue=0,
                                BigNumberThreshold=1e15,
                                SmallNumberThreshold=-1e15)
    # Convert to Diffraction MD and Lorentz Correction
    mantid.ConvertToDiffractionMDWorkspace(
        InputWorkspace='WISH000' + str(rnum),
        OutputWorkspace='WISH000' + str(rnum) + '_MD',
        LorentzCorrection=True)
Exemple #7
0
 def read(self, number, panel, extension):
     if type(number) is int:
         filename = self.datafile
         logger.notice("will be reading filename...{}".format(filename))
         spectra_min, spectra_max = self.return_panel_van.get(panel) if self.is_vanadium else \
             self.return_panel.get(panel)
         if panel != 0:
             output = "w{0}-{1}".format(number, panel)
         else:
             output = "w{}".format(number)
         shared_load_files(extension, filename, output, spectra_max,
                           spectra_min, False)
         if extension == "nxs_event":
             simple.LoadEventNexus(Filename=filename,
                                   OutputWorkspace=output,
                                   LoadMonitors='1')
             self.read_event_nexus(number, output, panel)
         if extension[:10] == "nxs_event_":
             label, tmin, tmax = split_string_event(extension)
             output = output + "_" + label
             if tmax == "end":
                 simple.LoadEventNexus(Filename=filename,
                                       OutputWorkspace=output,
                                       FilterByTimeStart=tmin,
                                       LoadMonitors='1',
                                       MonitorsAsEvents='1',
                                       FilterMonByTimeStart=tmin)
             else:
                 simple.LoadEventNexus(Filename=filename,
                                       OutputWorkspace=output,
                                       FilterByTimeStart=tmin,
                                       FilterByTimeStop=tmax,
                                       LoadMonitors='1',
                                       MonitorsAsEvents='1',
                                       FilterMonByTimeStart=tmin,
                                       FilterMonByTimeStop=tmax)
             self.read_event_nexus(number, output, panel)
     else:
         num_1, num_2 = split_run_string(number)
         output = "w{0}_{1}-{2}".format(num_1, num_2, panel)
         output1 = self.load_multi_run_part(extension, num_1, panel)
         output2 = self.load_multi_run_part(extension, num_2, panel)
         simple.MergeRuns(output1 + "," + output2, output)
         simple.DeleteWorkspace(output1)
         simple.DeleteWorkspace(output2)
     simple.ConvertUnits(InputWorkspace=output,
                         OutputWorkspace=output,
                         Target="Wavelength",
                         Emode="Elastic")
     lmin, lmax = Wish.LAMBDA_RANGE
     simple.CropWorkspace(InputWorkspace=output,
                          OutputWorkspace=output,
                          XMin=lmin,
                          XMax=lmax)
     monitor_run = "monitor{}".format(number)
     if monitor_run not in simple.mtd:
         monitor = self.process_incidentmon(number,
                                            extension,
                                            spline_terms=70)
     else:
         monitor = simple.mtd[monitor_run]
     simple.NormaliseToMonitor(InputWorkspace=output,
                               OutputWorkspace=output + "norm1",
                               MonitorWorkspace=monitor)
     simple.NormaliseToMonitor(InputWorkspace=output + "norm1",
                               OutputWorkspace=output + "norm2",
                               MonitorWorkspace=monitor,
                               IntegrationRangeMin=0.7,
                               IntegrationRangeMax=10.35)
     simple.DeleteWorkspace(output)
     simple.DeleteWorkspace(output + "norm1")
     simple.RenameWorkspace(InputWorkspace=output + "norm2",
                            OutputWorkspace=output)
     simple.ConvertUnits(InputWorkspace=output,
                         OutputWorkspace=output,
                         Target="TOF",
                         EMode="Elastic")
     simple.ReplaceSpecialValues(InputWorkspace=output,
                                 OutputWorkspace=output,
                                 NaNValue=0.0,
                                 NaNError=0.0,
                                 InfinityValue=0.0,
                                 InfinityError=0.0)
     return output
Exemple #8
0
def run_calibration(sample_ws,
                    vanadium_workspace,
                    van_integration,
                    bank,
                    spectrum_numbers,
                    full_inst_calib):
    """
    Creates Engineering calibration files with PDCalibration
    :param sample_ws: The workspace with the sample data.
    :param vanadium_workspace: The workspace with the vanadium data
    :param van_integration: The integration values from the vanadium corrections
    :param bank: The bank to crop to, both if none.
    :param spectrum_numbers: The spectrum numbers to crop to, no crop if none.
    :param full_inst_calib : workspace containing the full instrument calibration
    :return: The calibration output files, the vanadium curves workspace(s), and a clone of the sample file
    """

    def run_pd_calibration(kwargs_to_pass):
        return simple.PDCalibration(**kwargs_to_pass)

    def focus_and_make_van_curves(ceria_d, vanadium_d, grouping_kwarg):
        # focus ceria
        focused_ceria = simple.DiffractionFocussing(InputWorkspace=ceria_d, **grouping_kwarg)
        simple.ApplyDiffCal(InstrumentWorkspace=focused_ceria, ClearCalibration=True)
        tof_focused = simple.ConvertUnits(InputWorkspace=focused_ceria, Target='TOF')

        # focus van data
        focused_van = simple.DiffractionFocussing(InputWorkspace=vanadium_d, **grouping_kwarg)

        background_van = simple.EnggEstimateFocussedBackground(InputWorkspace=focused_van, NIterations='15',
                                                               XWindow=0.03)

        simple.DeleteWorkspace(focused_ceria)
        simple.DeleteWorkspace(focused_van)

        return tof_focused, background_van

    def ws_initial_process(ws):
        """Run some processing common to both the sample and vanadium workspaces"""
        simple.NormaliseByCurrent(InputWorkspace=ws, OutputWorkspace=ws)
        simple.ApplyDiffCal(InstrumentWorkspace=ws, CalibrationWorkspace=full_inst_calib)
        simple.ConvertUnits(InputWorkspace=ws, OutputWorkspace=ws, Target='dSpacing')
        return ws

    def calibrate_region_of_interest(roi, df_kwarg):
        focused_roi, curves_roi = focus_and_make_van_curves(ws_d, ws_van_d, df_kwarg)
        simple.RenameWorkspace(curves_roi, ("curves_" + roi))
        curves_output.append(curves_roi)

        # final calibration of focused data
        kwargs["InputWorkspace"] = focused_roi
        kwargs["OutputCalibrationTable"] = "engg_calibration_" + roi
        kwargs["DiagnosticWorkspaces"] = "diag_" + roi

        cal_roi = run_pd_calibration(kwargs)[0]
        cal_output[roi] = cal_roi

    # need to clone the data as PDCalibration rebins
    sample_raw = simple.CloneWorkspace(InputWorkspace=sample_ws)

    ws_van = simple.CloneWorkspace(vanadium_workspace)
    ws_van_d = ws_initial_process(ws_van)
    # sensitivity correction
    ws_van_d /= van_integration
    simple.ReplaceSpecialValues(InputWorkspace=ws_van_d, OutputWorkspace=ws_van_d, NaNValue=0, InfinityValue=0)

    ws_d = ws_initial_process(sample_ws)

    simple.DeleteWorkspace(van_integration)

    kwargs = {
        "PeakPositions": Utils.default_ceria_expected_peaks(final=True),
        "TofBinning": [15500, -0.0003, 52000],  # using a finer binning now have better stats
        "PeakWindow": 0.04,
        "MinimumPeakHeight": 0.5,
        "PeakFunction": 'BackToBackExponential',
        "CalibrationParameters": 'DIFC+TZERO+DIFA',
        "UseChiSq": True
    }
    cal_output = dict()
    curves_output = list()

    if spectrum_numbers is None:
        if bank == '1' or bank is None:
            df_kwarg = {"GroupingFileName": NORTH_BANK_CAL}
            calibrate_region_of_interest("bank_1", df_kwarg)

        if bank == '2' or bank is None:
            df_kwarg = {"GroupingFileName": SOUTH_BANK_CAL}
            calibrate_region_of_interest("bank_2", df_kwarg)
    else:
        grp_ws = Utils.create_grouping_workspace_from_spectra_list(spectrum_numbers, sample_raw)
        df_kwarg = {"GroupingWorkspace": grp_ws}
        calibrate_region_of_interest("Cropped", df_kwarg)

    simple.DeleteWorkspace(ws_van)
    simple.DeleteWorkspace("tof_focused")

    cal_params = list()
    # in the output calfile, rows are present for all detids, only read one from the region of interest
    bank_1_read_row = 0
    bank_2_read_row = 1200
    for bank_cal in cal_output:
        if bank_cal == "bank_1":
            read = bank_1_read_row
        elif bank_cal == "bank_2":
            read = bank_2_read_row
        else:
            read = int(Utils.create_spectrum_list_from_string(spectrum_numbers)[0])  # this can be int64
        row = cal_output[bank_cal].row(read)
        current_fit_params = {'difc': row['difc'], 'difa': row['difa'], 'tzero': row['tzero']}
        cal_params.append(current_fit_params)
    return cal_params, sample_raw, curves_output