def create_grouping_workspace_from_spectra_list(self): """ Create grouping workspace for ROI defined as a list of spectrum numbers """ grp_ws, _, _ = CreateGroupingWorkspace( InstrumentName=self.instrument, OutputWorkspace=GROUP_WS_NAMES[self.group]) for spec in self.spectra_list: det_ids = grp_ws.getDetectorIDs(spec - 1) grp_ws.setValue(det_ids[0], 1) self.group_ws = grp_ws
def create_grouping_workspace_from_calfile(self): """ Create grouping workspace for ROI defined in .cal file """ grp_ws, _, _ = CreateGroupingWorkspace( InstrumentName=self.instrument, OldCalFilename=self.cal_filepath, OutputWorkspace=GROUP_WS_NAMES[self.group]) self.group_ws = grp_ws
def group_pixels_2theta(vulcan_ws_name, tth_group_ws_name, start_iws, end_iws, two_theta_bin_range, two_theta_step): # create group workspace CreateGroupingWorkspace(InputWorkspace=vulcan_ws_name, GroupDetectorsBy='All', OutputWorkspace=tth_group_ws_name) # Get workspace vulcan_ws = mantid_helper.retrieve_workspace(vulcan_ws_name, True) group_ws = mantid_helper.retrieve_workspace(tth_group_ws_name, True) # Calculate 2theta for each pixels that is interested two_theta_array = numpy.arange(two_theta_bin_range[0], two_theta_bin_range[1] + two_theta_step, two_theta_step, dtype='float') num_2theta = two_theta_array.shape[0] num_pixels_array = numpy.zeros(shape=two_theta_array.shape, dtype='int') # source and sample position source = vulcan_ws.getInstrument().getSource().getPos() sample = vulcan_ws.getInstrument().getSample().getPos() # Calculate 2theta for each detectors for iws in range(0, vulcan_ws.getNumberHistograms()): if iws < start_iws or iws >= end_iws: # set to group 0 to ignore group_ws.dataY(iws)[0] = 0 else: # interested det_i = vulcan_ws.getDetector(iws).getPos() two_theta_i = (det_i - sample).angle(sample - source) * 180. / numpy.pi if two_theta_i < two_theta_array[0] or two_theta_i >= two_theta_array[-1]: group_ws.dataY(iws)[0] = 0 elif two_theta_i == two_theta_array[0]: group_ws.dataY(iws)[0] = 1 num_pixels_array[0] += 1 else: i_2theta = numpy.searchsorted(two_theta_array, [two_theta_i])[0] if i_2theta <= 0 or i_2theta >= num_2theta: raise RuntimeError('Programming error!') group_ws.dataY(iws)[0] = i_2theta num_pixels_array[i_2theta-1] += 1 # END-IF-ELSE # END-FOR # deal with zero-count-instance num_pixels_array[numpy.where(num_pixels_array < 0.1)] = -1 return two_theta_array, group_ws, num_pixels_array
def _generateGrouping(self, runnumber, metaWS, progress): group_to_real = {'Banks': 'Group', 'Modules': 'bank', '2_4 Grouping': '2_4Grouping'} group = self.getProperty('GroupDetectorsBy').value real_name = group_to_real.get(group, group) if not mtd.doesExist(group): if group == '2_4 Grouping': group = '2_4_Grouping' if not metaWS : metaWS = self._loadMetaWS(runnumber) CreateGroupingWorkspace(InputWorkspace=metaWS, GroupDetectorsBy=real_name, OutputWorkspace=group) progress.report('create grouping') else: progress.report() return group
def create_test_ws_and_group(): myFunc = "name=Gaussian, PeakCentre=2, Height=100, Sigma=0.01;" + \ "name=Gaussian, PeakCentre=1, Height=100, Sigma=0.01;" + \ "name=Gaussian, PeakCentre=4, Height=100, Sigma=0.01" ws = CreateSampleWorkspace("Event", "User Defined", myFunc, BankPixelWidth=1, XUnit='dSpacing', XMax=5, BinWidth=0.001, NumEvents=100000, NumBanks=8) for n in range(1, 5): MoveInstrumentComponent(ws, ComponentName=f'bank{n}', X=1 + n / 10, Y=0, Z=1 + n / 10, RelativePosition=False) MoveInstrumentComponent(ws, ComponentName=f'bank{n+4}', X=2 + n / 10, Y=0, Z=2 + n / 10, RelativePosition=False) MaskDetectors(ws, WorkspaceIndexList=[3, 7]) ws = ScaleX(ws, Factor=1.05, IndexMin=1, IndexMax=1) ws = ScaleX(ws, Factor=0.95, IndexMin=2, IndexMax=2) ws = ScaleX(ws, Factor=1.05, IndexMin=4, IndexMax=6) ws = ScaleX(ws, Factor=1.02, IndexMin=5, IndexMax=5) ws = ScaleX(ws, Factor=0.98, IndexMin=6, IndexMax=6) ws = Rebin(ws, '0,0.001,5') ws = ConvertUnits(ws, Target='TOF') groups, _, _ = CreateGroupingWorkspace(InputWorkspace=ws, ComponentName='basic_rect', CustomGroupingString='1-4,5-8') return ws, groups
def runTest(self): # 11MB file, process in 4 chunks kwargs = { 'RunNumbers': '45874', 'GroupDetectorsBy': 'Banks', 'Binning': [.5, -.004, 7], 'MaxChunkSize': .01 } # create grouping for two output spectra CreateGroupingWorkspace(InstrumentFilename='SNAP_Definition.xml', GroupDetectorsBy='Group', OutputWorkspace='SNAP_grouping') _assert_reduction_configuration(kwargs) SNAPReduce(**kwargs) RenameWorkspace(InputWorkspace='SNAP_45874_Banks_red', OutputWorkspace='with_chunks') # process without chunks kwargs['MaxChunkSize'] = 0 SNAPReduce(**kwargs) RenameWorkspace(InputWorkspace='SNAP_45874_Banks_red', OutputWorkspace='no_chunks')
def create_bank_grouping_workspace(self): """ Create grouping workspace for ROI corresponding to one or more banks """ ws_name = GROUP_WS_NAMES[self.group] grp_ws = None try: grp_ws = LoadDetectorsGroupingFile(InputFile=path.join( CALIB_DIR, GROUP_FILES[self.group]), OutputWorkspace=ws_name) except ValueError: logger.notice( "Grouping file not found in user directories - creating one") if self.group.banks and self.group != GROUP.TEXTURE20 and self.group != GROUP.TEXTURE30: grp_ws, _, _ = CreateGroupingWorkspace( InstrumentName=self.instrument, OutputWorkspace=ws_name, GroupNames=GROUP_BANK_ARGS[self.group]) if grp_ws: self.group_ws = grp_ws else: raise ValueError( "Could not find or create grouping requested - make sure the directory of the grouping.xml" " files is on the path")
def PyExec(self): # Retrieve all relevant notice in_Runs = self.getProperty("RunNumbers").value maskWSname = self._getMaskWSname() # either type of file-based calibration is stored in the same variable calib = self.getProperty("Calibration").value if calib == "Calibration File": cal_File = self.getProperty("CalibrationFilename").value elif calib == 'DetCal File': cal_File = self.getProperty('DetCalFilename').value cal_File = ','.join(cal_File) else: cal_File = None params = self.getProperty("Binning").value norm = self.getProperty("Normalization").value if norm == "From Processed Nexus": norm_File = self.getProperty("NormalizationFilename").value LoadNexusProcessed(Filename=norm_File, OutputWorkspace='normWS') normWS = 'normWS' elif norm == "From Workspace": normWS = str(self.getProperty("NormalizationWorkspace").value) else: normWS = None group_to_real = { 'Banks': 'Group', 'Modules': 'bank', '2_4 Grouping': '2_4Grouping' } group = self.getProperty('GroupDetectorsBy').value real_name = group_to_real.get(group, group) if not mtd.doesExist(group): if group == '2_4 Grouping': group = '2_4_Grouping' CreateGroupingWorkspace(InstrumentName='SNAP', GroupDetectorsBy=real_name, OutputWorkspace=group) Process_Mode = self.getProperty("ProcessingMode").value prefix = self.getProperty("OptionalPrefix").value # --------------------------- REDUCE DATA ----------------------------- Tag = 'SNAP' for r in in_Runs: self.log().notice("processing run %s" % r) self.log().information(str(self.get_IPTS_Local(r))) if self.getProperty("LiveData").value: Tag = 'Live' LoadPreNexusLive(Instrument='SNAP', OutputWorkspace='WS') else: Load(Filename='SNAP' + str(r), OutputWorkspace='WS') NormaliseByCurrent(InputWorkspace='WS', OutputWorkspace='WS') CompressEvents(InputWorkspace='WS', OutputWorkspace='WS') CropWorkspace(InputWorkspace='WS', OutputWorkspace='WS', XMax=50000) RemovePromptPulse(InputWorkspace='WS', OutputWorkspace='WS', Width='1600', Frequency='60.4') if maskWSname is not None: MaskDetectors(Workspace='WS', MaskedWorkspace=maskWSname) self._alignAndFocus(params, calib, cal_File, group) normWS = self._generateNormalization('WS_red', norm, normWS) WS_nor = None if normWS is not None: WS_nor = 'WS_nor' Divide(LHSWorkspace='WS_red', RHSWorkspace=normWS, OutputWorkspace='WS_nor') ReplaceSpecialValues(Inputworkspace='WS_nor', OutputWorkspace='WS_nor', NaNValue='0', NaNError='0', InfinityValue='0', InfinityError='0') new_Tag = Tag if len(prefix) > 0: new_Tag += '_' + prefix # Edit instrument geomety to make final workspace smaller on disk det_table = PreprocessDetectorsToMD( Inputworkspace='WS_red', OutputWorkspace='__SNAP_det_table') polar = np.degrees(det_table.column('TwoTheta')) azi = np.degrees(det_table.column('Azimuthal')) EditInstrumentGeometry(Workspace='WS_red', L2=det_table.column('L2'), Polar=polar, Azimuthal=azi) if WS_nor is not None: EditInstrumentGeometry(Workspace='WS_nor', L2=det_table.column('L2'), Polar=polar, Azimuthal=azi) mtd.remove('__SNAP_det_table') # Save requested formats basename = '%s_%s_%s' % (new_Tag, r, group) self._save(r, basename, norm) # temporary workspace no longer needed DeleteWorkspace(Workspace='WS') # rename everything as appropriate and determine output workspace name RenameWorkspace(Inputworkspace='WS_d', OutputWorkspace='%s_%s_d' % (new_Tag, r)) RenameWorkspace(Inputworkspace='WS_red', OutputWorkspace=basename + '_red') if norm == 'None': outputWksp = basename + '_red' else: outputWksp = basename + '_nor' RenameWorkspace(Inputworkspace='WS_nor', OutputWorkspace=basename + '_nor') if norm == "Extracted from Data": RenameWorkspace(Inputworkspace='peak_clip_WS', OutputWorkspace='%s_%s_normalizer' % (new_Tag, r)) # delte some things in production if Process_Mode == "Production": DeleteWorkspace(Workspace='%s_%s_d' % (new_Tag, r)) # was 'WS_d' if norm != "None": DeleteWorkspace(Workspace=basename + '_red') # was 'WS_red' if norm == "Extracted from Data": DeleteWorkspace(Workspace='%s_%s_normalizer' % (new_Tag, r)) # was 'peak_clip_WS' propertyName = 'OutputWorkspace_' + str(outputWksp) self.declareProperty( WorkspaceProperty(propertyName, outputWksp, Direction.Output)) self.setProperty(propertyName, outputWksp)
def TotalScatteringReduction(config=None): facility = config['Facility'] title = config['Title'] instr = config['Instrument'] # Get an instance to Mantid's logger log = Logger("TotalScatteringReduction") # Get sample info sample = get_sample(config) sam_mass_density = sample.get('MassDensity', None) sam_packing_fraction = sample.get('PackingFraction', None) sam_geometry = sample.get('Geometry', None) sam_material = sample.get('Material', None) sam_geo_dict = { 'Shape': 'Cylinder', 'Radius': config['Sample']['Geometry']['Radius'], 'Height': config['Sample']['Geometry']['Height'] } sam_mat_dict = { 'ChemicalFormula': sam_material, 'SampleMassDensity': sam_mass_density } if 'Environment' in config: sam_env_dict = { 'Name': config['Environment']['Name'], 'Container': config['Environment']['Container'] } else: sam_env_dict = {'Name': 'InAir', 'Container': 'PAC06'} # Get normalization info van = get_normalization(config) van_mass_density = van.get('MassDensity', None) van_packing_fraction = van.get('PackingFraction', 1.0) van_geometry = van.get('Geometry', None) van_material = van.get('Material', 'V') van_geo_dict = { 'Shape': 'Cylinder', 'Radius': config['Normalization']['Geometry']['Radius'], 'Height': config['Normalization']['Geometry']['Height'] } van_mat_dict = { 'ChemicalFormula': van_material, 'SampleMassDensity': van_mass_density } # Get calibration, characterization, and other settings merging = config['Merging'] binning = merging['QBinning'] characterizations = merging.get('Characterizations', None) # Grouping grouping = merging.get('Grouping', None) cache_dir = config.get("CacheDir", os.path.abspath('.')) OutputDir = config.get("OutputDir", os.path.abspath('.')) # Create Nexus file basenames sample['Runs'] = expand_ints(sample['Runs']) sample['Background']['Runs'] = expand_ints(sample['Background'].get( 'Runs', None)) ''' Currently not implemented: # wkspIndices = merging.get('SumBanks', None) # high_q_linear_fit_range = config['HighQLinearFitRange'] POWGEN options not used #alignAndFocusArgs['RemovePromptPulseWidth'] = 50 # alignAndFocusArgs['CompressTolerance'] use defaults # alignAndFocusArgs['UnwrapRef'] POWGEN option # alignAndFocusArgs['LowResRef'] POWGEN option # alignAndFocusArgs['LowResSpectrumOffset'] POWGEN option How much of each bank gets merged has info here in the form of # {"ID", "Qmin", "QMax"} # alignAndFocusArgs['CropWavelengthMin'] from characterizations file # alignAndFocusArgs['CropWavelengthMax'] from characterizations file ''' if facility == 'SNS': facility_file_format = '%s_%d' else: facility_file_format = '%s%d' sam_scans = ','.join( [facility_file_format % (instr, num) for num in sample['Runs']]) container_scans = ','.join([ facility_file_format % (instr, num) for num in sample['Background']["Runs"] ]) container_bg = None if "Background" in sample['Background']: sample['Background']['Background']['Runs'] = expand_ints( sample['Background']['Background']['Runs']) container_bg = ','.join([ facility_file_format % (instr, num) for num in sample['Background']['Background']['Runs'] ]) if len(container_bg) == 0: container_bg = None van['Runs'] = expand_ints(van['Runs']) van_scans = ','.join( [facility_file_format % (instr, num) for num in van['Runs']]) van_bg_scans = None if 'Background' in van: van_bg_scans = van['Background']['Runs'] van_bg_scans = expand_ints(van_bg_scans) van_bg_scans = ','.join( [facility_file_format % (instr, num) for num in van_bg_scans]) # Override Nexus file basename with Filenames if present if "Filenames" in sample: sam_scans = ','.join(sample["Filenames"]) if "Filenames" in sample['Background']: container_scans = ','.join(sample['Background']["Filenames"]) if "Background" in sample['Background']: if "Filenames" in sample['Background']['Background']: container_bg = ','.join( sample['Background']['Background']['Filenames']) if "Filenames" in van: van_scans = ','.join(van["Filenames"]) if "Background" in van: if "Filenames" in van['Background']: van_bg_scans = ','.join(van['Background']["Filenames"]) # Output nexus filename nexus_filename = title + '.nxs' try: os.remove(nexus_filename) except OSError: pass # Get sample corrections sam_abs_corr = sample.get("AbsorptionCorrection", None) sam_ms_corr = sample.get("MultipleScatteringCorrection", None) sam_inelastic_corr = SetInelasticCorrection( sample.get('InelasticCorrection', None)) # Warn about having absorption correction and multiple scat correction set if sam_abs_corr and sam_ms_corr: log.warning(MS_AND_ABS_CORR_WARNING) # Compute the absorption correction on the sample if it was provided sam_abs_ws = '' con_abs_ws = '' if sam_abs_corr: msg = "Applying '{}' absorption correction to sample" log.notice(msg.format(sam_abs_corr["Type"])) sam_abs_ws, con_abs_ws = create_absorption_wksp( sam_scans, sam_abs_corr["Type"], sam_geo_dict, sam_mat_dict, sam_env_dict, **config) # Get vanadium corrections van_mass_density = van.get('MassDensity', van_mass_density) van_packing_fraction = van.get('PackingFraction', van_packing_fraction) van_abs_corr = van.get("AbsorptionCorrection", {"Type": None}) van_ms_corr = van.get("MultipleScatteringCorrection", {"Type": None}) van_inelastic_corr = SetInelasticCorrection( van.get('InelasticCorrection', None)) # Warn about having absorption correction and multiple scat correction set if van_abs_corr["Type"] and van_ms_corr["Type"]: log.warning(MS_AND_ABS_CORR_WARNING) # Compute the absorption correction for the vanadium if provided van_abs_corr_ws = '' if van_abs_corr: msg = "Applying '{}' absorption correction to vanadium" log.notice(msg.format(van_abs_corr["Type"])) van_abs_corr_ws, van_con_ws = create_absorption_wksp( van_scans, van_abs_corr["Type"], van_geo_dict, van_mat_dict, **config) alignAndFocusArgs = dict() alignAndFocusArgs['CalFilename'] = config['Calibration']['Filename'] # alignAndFocusArgs['GroupFilename'] don't use # alignAndFocusArgs['Params'] = "0.,0.02,40." alignAndFocusArgs['ResampleX'] = -6000 alignAndFocusArgs['Dspacing'] = False alignAndFocusArgs['PreserveEvents'] = False alignAndFocusArgs['MaxChunkSize'] = 8 alignAndFocusArgs['CacheDir'] = os.path.abspath(cache_dir) # Get any additional AlignAndFocusArgs from JSON input if "AlignAndFocusArgs" in config: otherArgs = config["AlignAndFocusArgs"] alignAndFocusArgs.update(otherArgs) # Setup grouping output_grouping = False grp_wksp = "wksp_output_group" if grouping: if 'Initial' in grouping: if grouping['Initial'] and not grouping['Initial'] == u'': alignAndFocusArgs['GroupFilename'] = grouping['Initial'] if 'Output' in grouping: if grouping['Output'] and not grouping['Output'] == u'': output_grouping = True LoadDetectorsGroupingFile(InputFile=grouping['Output'], OutputWorkspace=grp_wksp) # If no output grouping specified, create it with Calibration Grouping if not output_grouping: LoadDiffCal(alignAndFocusArgs['CalFilename'], InstrumentName=instr, WorkspaceName=grp_wksp.replace('_group', ''), MakeGroupingWorkspace=True, MakeCalWorkspace=False, MakeMaskWorkspace=False) # Setup the 6 bank method if no grouping specified if not grouping: CreateGroupingWorkspace(InstrumentName=instr, GroupDetectorsBy='Group', OutputWorkspace=grp_wksp) alignAndFocusArgs['GroupingWorkspace'] = grp_wksp # TODO take out the RecalculatePCharge in the future once tested # Load Sample print("#-----------------------------------#") print("# Sample") print("#-----------------------------------#") sam_wksp = load('sample', sam_scans, sam_geometry, sam_material, sam_mass_density, sam_abs_ws, **alignAndFocusArgs) sample_title = "sample_and_container" save_banks(InputWorkspace=sam_wksp, Filename=nexus_filename, Title=sample_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) sam_molecular_mass = mtd[sam_wksp].sample().getMaterial( ).relativeMolecularMass() natoms = getNumberAtoms(sam_packing_fraction, sam_mass_density, sam_molecular_mass, Geometry=sam_geometry) # Load Sample Container print("#-----------------------------------#") print("# Sample Container") print("#-----------------------------------#") container = load('container', container_scans, absorption_wksp=con_abs_ws, **alignAndFocusArgs) save_banks(InputWorkspace=container, Filename=nexus_filename, Title=container, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Load Sample Container Background if container_bg is not None: print("#-----------------------------------#") print("# Sample Container's Background") print("#-----------------------------------#") container_bg = load('container_background', container_bg, **alignAndFocusArgs) save_banks(InputWorkspace=container_bg, Filename=nexus_filename, Title=container_bg, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Load Vanadium print("#-----------------------------------#") print("# Vanadium") print("#-----------------------------------#") van_wksp = load('vanadium', van_scans, van_geometry, van_material, van_mass_density, van_abs_corr_ws, **alignAndFocusArgs) vanadium_title = "vanadium_and_background" save_banks(InputWorkspace=van_wksp, Filename=nexus_filename, Title=vanadium_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) van_material = mtd[van_wksp].sample().getMaterial() van_molecular_mass = van_material.relativeMolecularMass() nvan_atoms = getNumberAtoms(1.0, van_mass_density, van_molecular_mass, Geometry=van_geometry) print("Sample natoms:", natoms) print("Vanadium natoms:", nvan_atoms) print("Vanadium natoms / Sample natoms:", nvan_atoms / natoms) # Load Vanadium Background van_bg = None if van_bg_scans is not None: print("#-----------------------------------#") print("# Vanadium Background") print("#-----------------------------------#") van_bg = load('vanadium_background', van_bg_scans, **alignAndFocusArgs) vanadium_bg_title = "vanadium_background" save_banks(InputWorkspace=van_bg, Filename=nexus_filename, Title=vanadium_bg_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Load Instrument Characterizations if characterizations: PDDetermineCharacterizations( InputWorkspace=sam_wksp, Characterizations='characterizations', ReductionProperties='__snspowderreduction') propMan = PropertyManagerDataService.retrieve('__snspowderreduction') qmax = 2. * np.pi / propMan['d_min'].value qmin = 2. * np.pi / propMan['d_max'].value for a, b in zip(qmin, qmax): print('Qrange:', a, b) # TODO: Add when we apply Qmin, Qmax cropping # mask_info = generate_cropping_table(qmin, qmax) # STEP 1: Subtract Backgrounds sam_raw = 'sam_raw' CloneWorkspace(InputWorkspace=sam_wksp, OutputWorkspace=sam_raw) # for later container_raw = 'container_raw' CloneWorkspace(InputWorkspace=container, OutputWorkspace=container_raw) # for later if van_bg is not None: RebinToWorkspace(WorkspaceToRebin=van_bg, WorkspaceToMatch=van_wksp, OutputWorkspace=van_bg) Minus(LHSWorkspace=van_wksp, RHSWorkspace=van_bg, OutputWorkspace=van_wksp) RebinToWorkspace(WorkspaceToRebin=container, WorkspaceToMatch=sam_wksp, OutputWorkspace=container) Minus(LHSWorkspace=sam_wksp, RHSWorkspace=container, OutputWorkspace=sam_wksp) if container_bg is not None: RebinToWorkspace(WorkspaceToRebin=container_bg, WorkspaceToMatch=container, OutputWorkspace=container_bg) Minus(LHSWorkspace=container, RHSWorkspace=container_bg, OutputWorkspace=container) for wksp in [container, van_wksp, sam_wksp]: ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp, Target="MomentumTransfer", EMode="Elastic") container_title = "container_minus_back" vanadium_title = "vanadium_minus_back" sample_title = "sample_minus_back" save_banks(InputWorkspace=container, Filename=nexus_filename, Title=container_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) save_banks(InputWorkspace=van_wksp, Filename=nexus_filename, Title=vanadium_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) save_banks(InputWorkspace=sam_wksp, Filename=nexus_filename, Title=sample_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # STEP 2.0: Prepare vanadium as normalization calibrant # Multiple-Scattering and Absorption (Steps 2-4) for Vanadium van_corrected = 'van_corrected' ConvertUnits(InputWorkspace=van_wksp, OutputWorkspace=van_corrected, Target="Wavelength", EMode="Elastic") if "Type" in van_abs_corr: if van_abs_corr['Type'] == 'Carpenter' \ or van_ms_corr['Type'] == 'Carpenter': CarpenterSampleCorrection( InputWorkspace=van_corrected, OutputWorkspace=van_corrected, CylinderSampleRadius=van['Geometry']['Radius']) elif van_abs_corr['Type'] == 'Mayers' \ or van_ms_corr['Type'] == 'Mayers': if van_ms_corr['Type'] == 'Mayers': MayersSampleCorrection(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, MultipleScattering=True) else: MayersSampleCorrection(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, MultipleScattering=False) else: print("NO VANADIUM absorption or multiple scattering!") else: CloneWorkspace(InputWorkspace=van_corrected, OutputWorkspace=van_corrected) ConvertUnits(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, Target='MomentumTransfer', EMode='Elastic') vanadium_title += "_ms_abs_corrected" save_banks(InputWorkspace=van_corrected, Filename=nexus_filename, Title=vanadium_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) save_banks(InputWorkspace=van_corrected, Filename=nexus_filename, Title=vanadium_title + "_with_peaks", OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # TODO subtract self-scattering of vanadium (According to Eq. 7 of Howe, # McGreevey, and Howells, JPCM, 1989) # Smooth Vanadium (strip peaks plus smooth) ConvertUnits(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, Target='dSpacing', EMode='Elastic') # After StripVanadiumPeaks, the workspace goes from EventWorkspace -> # Workspace2D StripVanadiumPeaks(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, BackgroundType='Quadratic') ConvertUnits(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, Target='MomentumTransfer', EMode='Elastic') vanadium_title += '_peaks_stripped' save_banks(InputWorkspace=van_corrected, Filename=nexus_filename, Title=vanadium_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) ConvertUnits(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, Target='TOF', EMode='Elastic') FFTSmooth(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, Filter="Butterworth", Params='20,2', IgnoreXBins=True, AllSpectra=True) ConvertUnits(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, Target='MomentumTransfer', EMode='Elastic') vanadium_title += '_smoothed' save_banks(InputWorkspace=van_corrected, Filename=nexus_filename, Title=vanadium_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Inelastic correction if van_inelastic_corr['Type'] == "Placzek": van_scan = van['Runs'][0] van_incident_wksp = 'van_incident_wksp' van_inelastic_opts = van['InelasticCorrection'] lambda_binning_fit = van_inelastic_opts['LambdaBinningForFit'] lambda_binning_calc = van_inelastic_opts['LambdaBinningForCalc'] print('van_scan:', van_scan) GetIncidentSpectrumFromMonitor(Filename=facility_file_format % (instr, van_scan), OutputWorkspace=van_incident_wksp) fit_type = van['InelasticCorrection']['FitSpectrumWith'] FitIncidentSpectrum(InputWorkspace=van_incident_wksp, OutputWorkspace=van_incident_wksp, FitSpectrumWith=fit_type, BinningForFit=lambda_binning_fit, BinningForCalc=lambda_binning_calc, PlotDiagnostics=False) van_placzek = 'van_placzek' SetSample(InputWorkspace=van_incident_wksp, Material={ 'ChemicalFormula': str(van_material), 'SampleMassDensity': str(van_mass_density) }) CalculatePlaczekSelfScattering(IncidentWorkspace=van_incident_wksp, ParentWorkspace=van_corrected, OutputWorkspace=van_placzek, L1=19.5, L2=alignAndFocusArgs['L2'], Polar=alignAndFocusArgs['Polar']) ConvertToHistogram(InputWorkspace=van_placzek, OutputWorkspace=van_placzek) # Save before rebin in Q for wksp in [van_placzek, van_corrected]: ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp, Target='MomentumTransfer', EMode='Elastic') Rebin(InputWorkspace=wksp, OutputWorkspace=wksp, Params=binning, PreserveEvents=True) save_banks(InputWorkspace=van_placzek, Filename=nexus_filename, Title="vanadium_placzek", OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Rebin in Wavelength for wksp in [van_placzek, van_corrected]: ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp, Target='Wavelength', EMode='Elastic') Rebin(InputWorkspace=wksp, OutputWorkspace=wksp, Params=lambda_binning_calc, PreserveEvents=True) # Save after rebin in Q for wksp in [van_placzek, van_corrected]: ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp, Target='MomentumTransfer', EMode='Elastic') # Subtract correction in Wavelength for wksp in [van_placzek, van_corrected]: ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp, Target='Wavelength', EMode='Elastic') if not mtd[wksp].isDistribution(): ConvertToDistribution(wksp) Minus(LHSWorkspace=van_corrected, RHSWorkspace=van_placzek, OutputWorkspace=van_corrected) # Save after subtraction for wksp in [van_placzek, van_corrected]: ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp, Target='MomentumTransfer', EMode='Elastic') vanadium_title += '_placzek_corrected' save_banks(InputWorkspace=van_corrected, Filename=nexus_filename, Title=vanadium_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) ConvertUnits(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, Target='MomentumTransfer', EMode='Elastic') SetUncertainties(InputWorkspace=van_corrected, OutputWorkspace=van_corrected, SetError='zero') # STEP 2.1: Normalize by Vanadium wksp_list = [sam_wksp, sam_raw, van_corrected] for name in wksp_list: ConvertUnits(InputWorkspace=name, OutputWorkspace=name, Target='MomentumTransfer', EMode='Elastic', ConvertFromPointData=False) Rebin(InputWorkspace=name, OutputWorkspace=name, Params=binning, PreserveEvents=True) # Save the sample - back / normalized Divide(LHSWorkspace=sam_wksp, RHSWorkspace=van_corrected, OutputWorkspace=sam_wksp) sample_title += "_normalized" save_banks(InputWorkspace=sam_wksp, Filename=nexus_filename, Title=sample_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Save the sample / normalized (ie no background subtraction) Divide(LHSWorkspace=sam_raw, RHSWorkspace=van_corrected, OutputWorkspace=sam_raw) save_banks(InputWorkspace=sam_raw, Filename=nexus_filename, Title="sample_normalized", OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Output an initial I(Q) for sample iq_filename = title + '_initial_iofq_banks.nxs' save_banks(InputWorkspace=sam_wksp, Filename=iq_filename, Title="IQ_banks", OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) wksp_list = [container, container_raw, van_corrected] if container_bg is not None: wksp_list.append(container_bg) if van_bg is not None: wksp_list.append(van_bg) for name in wksp_list: ConvertUnits(InputWorkspace=name, OutputWorkspace=name, Target='MomentumTransfer', EMode='Elastic', ConvertFromPointData=False) Rebin(InputWorkspace=name, OutputWorkspace=name, Params=binning, PreserveEvents=True) # Save the container - container_background / normalized Divide(LHSWorkspace=container, RHSWorkspace=van_corrected, OutputWorkspace=container) container_title += '_normalized' save_banks(InputWorkspace=container, Filename=nexus_filename, Title=container_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Save the container / normalized (ie no background subtraction) Divide(LHSWorkspace=container_raw, RHSWorkspace=van_corrected, OutputWorkspace=container_raw) save_banks(InputWorkspace=container_raw, Filename=nexus_filename, Title="container_normalized", OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Save the container_background / normalized if container_bg is not None: Divide(LHSWorkspace=container_bg, RHSWorkspace=van_corrected, OutputWorkspace=container_bg) container_bg_title = "container_back_normalized" save_banks(InputWorkspace=container_bg, Filename=nexus_filename, Title=container_bg_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Save the vanadium_background / normalized if van_bg is not None: Divide(LHSWorkspace=van_bg, RHSWorkspace=van_corrected, OutputWorkspace=van_bg) vanadium_bg_title += "_normalized" save_banks(InputWorkspace=van_bg, Filename=nexus_filename, Title=vanadium_bg_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # STEP 3 & 4: Subtract multiple scattering and apply absorption correction ConvertUnits(InputWorkspace=sam_wksp, OutputWorkspace=sam_wksp, Target="Wavelength", EMode="Elastic") sam_corrected = 'sam_corrected' if sam_abs_corr and sam_ms_corr: if sam_abs_corr['Type'] == 'Carpenter' \ or sam_ms_corr['Type'] == 'Carpenter': CarpenterSampleCorrection( InputWorkspace=sam_wksp, OutputWorkspace=sam_corrected, CylinderSampleRadius=sample['Geometry']['Radius']) elif sam_abs_corr['Type'] == 'Mayers' \ or sam_ms_corr['Type'] == 'Mayers': if sam_ms_corr['Type'] == 'Mayers': MayersSampleCorrection(InputWorkspace=sam_wksp, OutputWorkspace=sam_corrected, MultipleScattering=True) else: MayersSampleCorrection(InputWorkspace=sam_wksp, OutputWorkspace=sam_corrected, MultipleScattering=False) else: print("NO SAMPLE absorption or multiple scattering!") CloneWorkspace(InputWorkspace=sam_wksp, OutputWorkspace=sam_corrected) ConvertUnits(InputWorkspace=sam_corrected, OutputWorkspace=sam_corrected, Target='MomentumTransfer', EMode='Elastic') sample_title += "_ms_abs_corrected" save_banks(InputWorkspace=sam_corrected, Filename=nexus_filename, Title=sample_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) else: CloneWorkspace(InputWorkspace=sam_wksp, OutputWorkspace=sam_corrected) # STEP 5: Divide by number of atoms in sample mtd[sam_corrected] = (nvan_atoms / natoms) * mtd[sam_corrected] ConvertUnits(InputWorkspace=sam_corrected, OutputWorkspace=sam_corrected, Target='MomentumTransfer', EMode='Elastic') sample_title += "_norm_by_atoms" save_banks(InputWorkspace=sam_corrected, Filename=nexus_filename, Title=sample_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # STEP 6: Divide by total scattering length squared = total scattering # cross-section over 4 * pi van_material = mtd[van_corrected].sample().getMaterial() sigma_v = van_material.totalScatterXSection() prefactor = (sigma_v / (4. * np.pi)) msg = "Total scattering cross-section of Vanadium:{} sigma_v / 4*pi: {}" print(msg.format(sigma_v, prefactor)) mtd[sam_corrected] = prefactor * mtd[sam_corrected] sample_title += '_multiply_by_vanSelfScat' save_banks(InputWorkspace=sam_corrected, Filename=nexus_filename, Title=sample_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # STEP 7: Inelastic correction ConvertUnits(InputWorkspace=sam_corrected, OutputWorkspace=sam_corrected, Target='Wavelength', EMode='Elastic') if sam_inelastic_corr['Type'] == "Placzek": if sam_material is None: error = "For Placzek correction, must specifiy a sample material." raise Exception(error) for sam_scan in sample['Runs']: sam_incident_wksp = 'sam_incident_wksp' sam_inelastic_opts = sample['InelasticCorrection'] lambda_binning_fit = sam_inelastic_opts['LambdaBinningForFit'] lambda_binning_calc = sam_inelastic_opts['LambdaBinningForCalc'] GetIncidentSpectrumFromMonitor(Filename=facility_file_format % (instr, sam_scan), OutputWorkspace=sam_incident_wksp) fit_type = sample['InelasticCorrection']['FitSpectrumWith'] FitIncidentSpectrum(InputWorkspace=sam_incident_wksp, OutputWorkspace=sam_incident_wksp, FitSpectrumWith=fit_type, BinningForFit=lambda_binning_fit, BinningForCalc=lambda_binning_calc) sam_placzek = 'sam_placzek' SetSample(InputWorkspace=sam_incident_wksp, Material={ 'ChemicalFormula': str(sam_material), 'SampleMassDensity': str(sam_mass_density) }) CalculatePlaczekSelfScattering(IncidentWorkspace=sam_incident_wksp, ParentWorkspace=sam_corrected, OutputWorkspace=sam_placzek, L1=19.5, L2=alignAndFocusArgs['L2'], Polar=alignAndFocusArgs['Polar']) ConvertToHistogram(InputWorkspace=sam_placzek, OutputWorkspace=sam_placzek) # Save before rebin in Q for wksp in [sam_placzek, sam_corrected]: ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp, Target='MomentumTransfer', EMode='Elastic') Rebin(InputWorkspace=wksp, OutputWorkspace=wksp, Params=binning, PreserveEvents=True) save_banks(InputWorkspace=sam_placzek, Filename=nexus_filename, Title="sample_placzek", OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Save after rebin in Q for wksp in [sam_placzek, sam_corrected]: ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp, Target='MomentumTransfer', EMode='Elastic') Minus(LHSWorkspace=sam_corrected, RHSWorkspace=sam_placzek, OutputWorkspace=sam_corrected) # Save after subtraction for wksp in [sam_placzek, sam_corrected]: ConvertUnits(InputWorkspace=wksp, OutputWorkspace=wksp, Target='MomentumTransfer', EMode='Elastic') sample_title += '_placzek_corrected' save_banks(InputWorkspace=sam_corrected, Filename=nexus_filename, Title=sample_title, OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # STEP 7: Output spectrum # TODO Since we already went from Event -> 2D workspace, can't use this # anymore print('sam:', mtd[sam_corrected].id()) print('van:', mtd[van_corrected].id()) if alignAndFocusArgs['PreserveEvents']: CompressEvents(InputWorkspace=sam_corrected, OutputWorkspace=sam_corrected) # F(Q) bank-by-bank Section fq_banks_wksp = "FQ_banks_wksp" CloneWorkspace(InputWorkspace=sam_corrected, OutputWorkspace=fq_banks_wksp) # TODO: Add the following when implemented - FQ_banks = 'FQ_banks' # S(Q) bank-by-bank Section material = mtd[sam_corrected].sample().getMaterial() if material.name() is None or len(material.name().strip()) == 0: raise RuntimeError('Sample material was not set') bcoh_avg_sqrd = material.cohScatterLength() * material.cohScatterLength() btot_sqrd_avg = material.totalScatterLengthSqrd() laue_monotonic_diffuse_scat = btot_sqrd_avg / bcoh_avg_sqrd sq_banks_wksp = 'SQ_banks_wksp' CloneWorkspace(InputWorkspace=sam_corrected, OutputWorkspace=sq_banks_wksp) # TODO: Add the following when implemented ''' SQ_banks = (1. / bcoh_avg_sqrd) * \ mtd[sq_banks_wksp] - laue_monotonic_diffuse_scat + 1. ''' # Save S(Q) and F(Q) to diagnostics NeXus file save_banks(InputWorkspace=fq_banks_wksp, Filename=nexus_filename, Title="FQ_banks", OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) save_banks(InputWorkspace=sq_banks_wksp, Filename=nexus_filename, Title="SQ_banks", OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Output a main S(Q) and F(Q) file fq_filename = title + '_fofq_banks_corrected.nxs' save_banks(InputWorkspace=fq_banks_wksp, Filename=fq_filename, Title="FQ_banks", OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) sq_filename = title + '_sofq_banks_corrected.nxs' save_banks(InputWorkspace=sq_banks_wksp, Filename=sq_filename, Title="SQ_banks", OutputDir=OutputDir, GroupingWorkspace=grp_wksp, Binning=binning) # Print log information print("<b>^2:", bcoh_avg_sqrd) print("<b^2>:", btot_sqrd_avg) print("Laue term:", laue_monotonic_diffuse_scat) print("sample total xsection:", mtd[sam_corrected].sample().getMaterial().totalScatterXSection()) print("vanadium total xsection:", mtd[van_corrected].sample().getMaterial().totalScatterXSection()) # Output Bragg Diffraction ConvertUnits(InputWorkspace=sam_corrected, OutputWorkspace=sam_corrected, Target="TOF", EMode="Elastic") ConvertToHistogram(InputWorkspace=sam_corrected, OutputWorkspace=sam_corrected) xmin, xmax = get_each_spectra_xmin_xmax(mtd[sam_corrected]) CropWorkspaceRagged(InputWorkspace=sam_corrected, OutputWorkspace=sam_corrected, Xmin=xmin, Xmax=xmax) xmin_rebin = min(xmin) xmax_rebin = max(xmax) tof_binning = "{xmin},-0.01,{xmax}".format(xmin=xmin_rebin, xmax=xmax_rebin) Rebin(InputWorkspace=sam_corrected, OutputWorkspace=sam_corrected, Params=tof_binning) SaveGSS(InputWorkspace=sam_corrected, Filename=os.path.join(os.path.abspath(OutputDir), title + ".gsa"), SplitFiles=False, Append=False, MultiplyByBinWidth=True, Format="SLOG", ExtendedHeader=True) return mtd[sam_corrected]
def process_json(json_filename): """This will read a json file, process the data and save the calibration. Only ``Calibrant`` and ``Groups`` are required. An example input showing every possible options is: .. code-block:: JSON { "Calibrant": "12345", "Groups": "/path/to/groups.xml", "Mask": "/path/to/mask.xml", "Instrument": "NOM", "Date" : "2019_09_04", "SampleEnvironment": "shifter", "PreviousCalibration": "/path/to/cal.h5", "CalDirectory": "/path/to/output_directory", "CrossCorrelate": {"Step": 0.001, "DReference: 1.5, "Xmin": 1.0, "Xmax": 3.0, "MaxDSpaceShift": 0.25}, "PDCalibration": {"PeakPositions": [1, 2, 3], "TofBinning": (300,0.001,16666), "PeakFunction": 'Gaussian', "PeakWindow": 0.1, "PeakWidthPercent": 0.001} } """ with open(json_filename) as json_file: args = json.load(json_file) calibrant_file = args.get('CalibrantFile', None) if calibrant_file is None: calibrant = args['Calibrant'] groups = args['Groups'] out_groups_by = args.get('OutputGroupsBy', 'Group') sample_env = args.get('SampleEnvironment', 'UnknownSampleEnvironment') mask = args.get('Mask') instrument = args.get('Instrument', 'NOM') cc_kwargs = args.get('CrossCorrelate', {}) pdcal_kwargs = args.get('PDCalibration', {}) previous_calibration = args.get('PreviousCalibration') date = str(args.get('Date', datetime.datetime.now().strftime('%Y_%m_%d'))) caldirectory = str(args.get('CalDirectory', os.path.abspath('.'))) if calibrant_file is not None: ws = Load(calibrant_file) calibrant = ws.getRun().getProperty('run_number').value else: filename = f'{instrument}_{calibrant}' ws = Load(filename) calfilename = f'{caldirectory}/{instrument}_{calibrant}_{date}_{sample_env}.h5' logger.notice(f'going to create calibration file: {calfilename}') groups = LoadDetectorsGroupingFile(groups, InputWorkspace=ws) if mask: mask = LoadMask(instrument, mask) MaskDetectors(ws, MaskedWorkspace=mask) if previous_calibration: previous_calibration = LoadDiffCal(previous_calibration, MakeGroupingWorkspace=False, MakeMaskWorkspace=False) diffcal = do_group_calibration(ws, groups, previous_calibration, cc_kwargs=cc_kwargs, pdcal_kwargs=pdcal_kwargs) mask = mtd['group_calibration_pd_diffcal_mask'] CreateGroupingWorkspace(InputWorkspace=ws, GroupDetectorsBy=out_groups_by, OutputWorkspace='out_groups') SaveDiffCal(CalibrationWorkspace=diffcal, MaskWorkspace=mask, GroupingWorkspace=mtd['out_groups'], Filename=calfilename)
def PyExec(self): temporary_workspaces = [] self.temp_ws = temp_workspace_generator( temporary_workspaces) # name generator for temporary workpaces prefix_output = self.getProperty('OutputWorkspacesPrefix').value progress_percent_start, progress_percent_end, reports_count = 0.0, 0.01, 5 progress = Progress(self, progress_percent_start, progress_percent_end, reports_count) input_workspace = self.getPropertyValue( 'InputWorkspace') # name of the input workspace adjustment_diagnostics = list( ) # list workspace names that analyze the orientation of the banks # Create a grouping workspace whereby we group detectors by banks grouping_workspace = self.temp_ws() # a temporary name CreateGroupingWorkspace(InputWorkspace=input_workspace, OutputWorkspace=grouping_workspace, GroupDetectorsBy='bank') # Remove delayed emission time from the moderator kwargs = dict(InputWorkspace=input_workspace, Emode='Elastic', OutputWorkspace=input_workspace) self.run_algorithm('ModeratorTzero', 0, 0.02, soft_crash=True, **kwargs) progress.report('ModeratorTzero has been applied') # Find dSpacing to TOF conversion DIFC parameter difc_table = f'{prefix_output}PDCalibration_difc' diagnostics_workspaces = prefix_output + 'PDCalibration_diagnostics' # group workspace kwargs = dict(InputWorkspace=input_workspace, TofBinning=self.getProperty('TofBinning').value, PeakFunction=self.getProperty('PeakFunction').value, PeakPositions=self.getProperty('PeakPositions').value, CalibrationParameters='DIFC', OutputCalibrationTable=difc_table, DiagnosticWorkspaces=diagnostics_workspaces) PDCalibration(**kwargs) progress.report('PDCalibration has been applied') # Create one spectra in d-spacing for each bank using the original instrument geometry self.fitted_in_dspacing( fitted_in_tof=prefix_output + 'PDCalibration_diagnostics_fitted', workspace_with_instrument=input_workspace, output_workspace=prefix_output + 'PDCalibration_peaks_original', grouping_workspace=grouping_workspace) adjustment_diagnostics.append(prefix_output + 'PDCalibration_peaks_original') # Find the peak centers in TOF units, for the peaks found at each pixel peak_centers_in_tof = prefix_output + 'PDCalibration_diagnostics_tof' self.centers_in_tof( prefix_output + 'PDCalibration_diagnostics_dspacing', difc_table, peak_centers_in_tof) mtd[diagnostics_workspaces].add(peak_centers_in_tof) # Find the Histogram of peak deviations (in d-spacing units) # for each bank, using the original instrument geometry self.histogram_peak_deviations( prefix_output + 'PDCalibration_diagnostics_tof', input_workspace, prefix_output + 'peak_deviations_original', grouping_workspace) adjustment_diagnostics.append(prefix_output + 'peak_deviations_original') # repeat with percent peak deviations for each bank, using the adjusted instrument geometry self.histogram_peak_deviations( prefix_output + 'PDCalibration_diagnostics_tof', input_workspace, prefix_output + 'percent_peak_deviations_original', grouping_workspace, deviation_params=[-10, 0.01, 10], percent_deviations=True) adjustment_diagnostics.append(prefix_output + 'percent_peak_deviations_original') # store the DIFC and DIFC_mask workspace created by PDCalibration in the diagnostics workspace mtd[diagnostics_workspaces].add(difc_table) mtd[diagnostics_workspaces].add(difc_table + '_mask') adjustments_table_name = f'{prefix_output}adjustments' # Adjust the position of the source along the beam (Z) axis # The instrument in `input_workspace` is adjusted in-place if self.getProperty('AdjustSource').value is True: dz = self.getProperty('SourceMaxTranslation').value kwargs = dict( InputWorkspace=input_workspace, OutputWorkspace=input_workspace, PeakCentersTofTable=peak_centers_in_tof, PeakPositions=self.getProperty('PeakPositions').value, MaskWorkspace=f'{difc_table}_mask', FitSourcePosition=True, FitSamplePosition=False, Zposition=True, MinZPosition=-dz, MaxZPosition=dz, Minimizer='L-BFGS-B') self.run_algorithm('AlignComponents', 0.1, 0.2, **kwargs) else: # Impose the fixed position of the source and save into the adjustments table self._fixed_source_set_and_table(adjustments_table_name) # Translate and rotate the each bank, only after the source has been adjusted # The instrument in `input_workspace` is adjusted in-place # Translation options to AlignComponents dt = self.getProperty('ComponentMaxTranslation' ).value # maximum translation along either axis move_y = False if self.getProperty('FixY').value is True else True kwargs_transl = dict(Xposition=True, MinXPosition=-dt, MaxXPosition=dt, Yposition=move_y, MinYPosition=-dt, MaxYPosition=dt, Zposition=True, MinZPosition=-dt, MaxZPosition=dt) # Rotation options for AlignComponents dr = self.getProperty( 'ComponentMaxRotation').value # maximum rotation along either axis rot_z = False if self.getProperty('FixYaw').value is True else True kwargs_rotat = dict(AlphaRotation=True, MinAlphaRotation=-dr, MaxAlphaRotation=dr, BetaRotation=True, MinBetaRotation=-dr, MaxBetaRotation=dr, GammaRotation=rot_z, MinGammaRotation=-dr, MaxGammaRotation=dr, EulerConvention='YXZ') # Remaining options for AlignComponents displacements_table_name = f'{prefix_output}displacements' kwargs = dict(InputWorkspace=input_workspace, OutputWorkspace=input_workspace, PeakCentersTofTable=peak_centers_in_tof, PeakPositions=self.getProperty('PeakPositions').value, MaskWorkspace=f'{difc_table}_mask', AdjustmentsTable=adjustments_table_name + '_banks', DisplacementsTable=displacements_table_name, FitSourcePosition=False, FitSamplePosition=False, ComponentList=self.getProperty('ComponentList').value, Minimizer=self.getProperty('Minimizer').value, MaxIterations=self.getProperty('MaxIterations').value) self.run_algorithm('AlignComponents', 0.2, 0.97, **kwargs, **kwargs_transl, **kwargs_rotat) progress.report('AlignComponents has been applied') # AlignComponents produces two unwanted workspaces temporary_workspaces.append('calWS') # Append the banks table to the source table, then delete the banks table. self._append_second_to_first(adjustments_table_name, adjustments_table_name + '_banks') # Create one spectra in d-spacing for each bank using the adjusted instrument geometry. # The spectra can be compare to those of prefix_output + 'PDCalibration_peaks_original' self.fitted_in_dspacing( fitted_in_tof=prefix_output + 'PDCalibration_diagnostics_fitted', workspace_with_instrument=input_workspace, output_workspace=prefix_output + 'PDCalibration_peaks_adjusted', grouping_workspace=grouping_workspace) adjustment_diagnostics.append(prefix_output + 'PDCalibration_peaks_adjusted') # Find the Histogram of peak deviations (in d-spacing units) # for each bank, using the adjusted instrument geometry self.histogram_peak_deviations( prefix_output + 'PDCalibration_diagnostics_tof', input_workspace, prefix_output + 'peak_deviations_adjusted', grouping_workspace) adjustment_diagnostics.append(prefix_output + 'peak_deviations_adjusted') # repeat with percent peak deviations for each bank, using the adjusted instrument geometry self.histogram_peak_deviations( prefix_output + 'PDCalibration_diagnostics_tof', input_workspace, prefix_output + 'percent_peak_deviations_adjusted', grouping_workspace, deviation_params=[-10, 0.01, 10], percent_deviations=True) adjustment_diagnostics.append(prefix_output + 'percent_peak_deviations_adjusted') # summarize the changes observed in the histogram of percent peak deviations self.peak_deviations_summarize( prefix_output + 'percent_peak_deviations_original', prefix_output + 'percent_peak_deviations_adjusted', prefix_output + 'percent_peak_deviations_summary') adjustment_diagnostics.append(prefix_output + 'percent_peak_deviations_summary') # Create a WorkspaceGroup with the orientation diagnostics GroupWorkspaces(InputWorkspaces=adjustment_diagnostics, OutputWorkspace=prefix_output + 'bank_adjustment_diagnostics') # clean up at the end (only happens if algorithm completes sucessfully) [ DeleteWorkspace(name) for name in temporary_workspaces if AnalysisDataService.doesExist(name) ]
def PyExec(self): runs = self.getProperty("Filename").value if not runs: ipts = self.getProperty("IPTS").value runs = ['/HFIR/HB2C/IPTS-{}/nexus/HB2C_{}.nxs.h5'.format(ipts, run) for run in self.getProperty("RunNumbers").value] grouping = self.getProperty("Grouping").value if grouping == 'None': grouping = 1 else: grouping = 2 if grouping == '2x2' else 4 x_dim = 480*8 // grouping y_dim = 512 // grouping number_of_runs = len(runs) data_array = np.empty((number_of_runs, x_dim, y_dim), dtype=np.float64) s1_array = [] duration_array = [] run_number_array = [] monitor_count_array = [] progress = Progress(self, 0.0, 1.0, number_of_runs+3) for n, run in enumerate(runs): progress.report('Loading: '+run) with h5py.File(run, 'r') as f: bc = np.zeros((512*480*8),dtype=np.int64) for b in range(8): bc += np.bincount(f['/entry/bank'+str(b+1)+'_events/event_id'].value,minlength=512*480*8) bc = bc.reshape((480*8, 512)) if grouping == 2: bc = bc[::2,::2]+bc[1::2,::2]+bc[::2,1::2]+bc[1::2,1::2] elif grouping == 4: bc = (bc[::4,::4] + bc[1::4,::4] + bc[2::4,::4] + bc[3::4,::4] + bc[::4,1::4] + bc[1::4,1::4] + bc[2::4,1::4] + bc[3::4,1::4] + bc[::4,2::4] + bc[1::4,2::4] + bc[2::4,2::4] + bc[3::4,2::4] + bc[::4,3::4] + bc[1::4,3::4] + bc[2::4,3::4] + bc[3::4,3::4]) data_array[n] = bc s1_array.append(f['/entry/DASlogs/HB2C:Mot:s1.RBV/average_value'].value[0]) duration_array.append(float(f['/entry/duration'].value[0])) run_number_array.append(float(f['/entry/run_number'].value[0])) monitor_count_array.append(float(f['/entry/monitor1/total_counts'].value[0])) progress.report('Creating MDHistoWorkspace') createWS_alg = self.createChildAlgorithm("CreateMDHistoWorkspace", enableLogging=False) createWS_alg.setProperty("SignalInput", data_array) createWS_alg.setProperty("ErrorInput", np.sqrt(data_array)) createWS_alg.setProperty("Dimensionality", 3) createWS_alg.setProperty("Extents", '0.5,{},0.5,{},0.5,{}'.format(y_dim+0.5, x_dim+0.5, number_of_runs+0.5)) createWS_alg.setProperty("NumberOfBins", '{},{},{}'.format(y_dim,x_dim,number_of_runs)) createWS_alg.setProperty("Names", 'y,x,scanIndex') createWS_alg.setProperty("Units", 'bin,bin,number') createWS_alg.execute() outWS = createWS_alg.getProperty("OutputWorkspace").value progress.report('Getting IDF') # Get the instrument and some logs from the first file; assume the rest are the same _tmp_ws = LoadEventNexus(runs[0], MetaDataOnly=True, EnableLogging=False) # The following logs should be the same for all runs RemoveLogs(_tmp_ws, KeepLogs='HB2C:Mot:detz,HB2C:Mot:detz.RBV,HB2C:Mot:s2,HB2C:Mot:s2.RBV,' 'HB2C:Mot:sgl,HB2C:Mot:sgl.RBV,HB2C:Mot:sgu,HB2C:Mot:sgu.RBV,' 'run_title,start_time,experiment_identifier,HB2C:CS:CrystalAlign:UBMatrix', EnableLogging=False) try: ub = np.array(re.findall(r'-?\d+\.*\d*', _tmp_ws.run().getProperty('HB2C:CS:CrystalAlign:UBMatrix').value[0]), dtype=np.float).reshape(3,3) sgl = np.deg2rad(_tmp_ws.run().getProperty('HB2C:Mot:sgl.RBV').value[0]) # 'HB2C:Mot:sgl.RBV,1,0,0,-1' sgu = np.deg2rad(_tmp_ws.run().getProperty('HB2C:Mot:sgu.RBV').value[0]) # 'HB2C:Mot:sgu.RBV,0,0,1,-1' sgl_a = np.array([[ 1, 0, 0], [ 0, np.cos(sgl), np.sin(sgl)], [ 0, -np.sin(sgl), np.cos(sgl)]]) sgu_a = np.array([[ np.cos(sgu), np.sin(sgu), 0], [-np.sin(sgu), np.cos(sgu), 0], [ 0, 0, 1]]) UB = sgl_a.dot(sgu_a).dot(ub) # Apply the Goniometer tilts to the UB matrix SetUB(_tmp_ws, UB=UB, EnableLogging=False) except (RuntimeError, ValueError): SetUB(_tmp_ws, EnableLogging=False) if grouping > 1: _tmp_group, _, _ = CreateGroupingWorkspace(InputWorkspace=_tmp_ws, EnableLogging=False) group_number = 0 for x in range(0,480*8,grouping): for y in range(0,512,grouping): group_number += 1 for j in range(grouping): for i in range(grouping): _tmp_group.dataY(y+i+(x+j)*512)[0] = group_number _tmp_ws = GroupDetectors(InputWorkspace=_tmp_ws, CopyGroupingFromWorkspace=_tmp_group, EnableLogging=False) DeleteWorkspace(_tmp_group, EnableLogging=False) progress.report('Adding logs') # Hack: ConvertToMD is needed so that a deep copy of the ExperimentInfo can happen # outWS.addExperimentInfo(_tmp_ws) # This doesn't work but should, when you delete `ws` `outWS` also loses it's ExperimentInfo _tmp_ws = Rebin(_tmp_ws, '0,1,2', EnableLogging=False) _tmp_ws = ConvertToMD(_tmp_ws, dEAnalysisMode='Elastic', EnableLogging=False, PreprocDetectorsWS='__PreprocessedDetectorsWS') preprocWS = mtd['__PreprocessedDetectorsWS'] twotheta = preprocWS.column(2) azimuthal = preprocWS.column(3) outWS.copyExperimentInfos(_tmp_ws) DeleteWorkspace(_tmp_ws, EnableLogging=False) DeleteWorkspace('__PreprocessedDetectorsWS', EnableLogging=False) # end Hack outWS.getExperimentInfo(0).run().addProperty('s1', s1_array, True) outWS.getExperimentInfo(0).run().getProperty('s1').units = 'deg' outWS.getExperimentInfo(0).run().addProperty('duration', duration_array, True) outWS.getExperimentInfo(0).run().getProperty('duration').units = 'second' outWS.getExperimentInfo(0).run().addProperty('run_number', run_number_array, True) outWS.getExperimentInfo(0).run().addProperty('monitor_count', monitor_count_array, True) outWS.getExperimentInfo(0).run().addProperty('twotheta', twotheta, True) outWS.getExperimentInfo(0).run().addProperty('azimuthal', azimuthal, True) self.setProperty("OutputWorkspace", outWS)
def load_and_group(self, runs: List[str]) -> IMDHistoWorkspace: """ Load the data with given grouping """ # grouping config grouping = self.getProperty("Grouping").value if grouping == 'None': grouping = 1 else: grouping = 2 if grouping == '2x2' else 4 number_of_runs = len(runs) x_dim = 480 * 8 // grouping y_dim = 512 // grouping data_array = np.empty((number_of_runs, x_dim, y_dim), dtype=np.float64) s1_array = [] duration_array = [] run_number_array = [] monitor_count_array = [] progress = Progress(self, 0.0, 1.0, number_of_runs + 3) for n, run in enumerate(runs): progress.report('Loading: ' + run) with h5py.File(run, 'r') as f: bc = np.zeros((512 * 480 * 8), dtype=np.int64) for b in range(8): bc += np.bincount(f['/entry/bank' + str(b + 1) + '_events/event_id'].value, minlength=512 * 480 * 8) bc = bc.reshape((480 * 8, 512)) if grouping == 2: bc = bc[::2, ::2] + bc[1::2, ::2] + bc[::2, 1::2] + bc[1::2, 1::2] elif grouping == 4: bc = bc[::4, ::4] + bc[1::4, ::4] + bc[2::4, ::4] + bc[3::4, ::4] + bc[::4, 1::4] + bc[1::4, 1::4] + bc[2::4, 1::4] + \ bc[3::4, 1::4] + bc[::4, 2::4] + bc[1::4, 2::4] + bc[2::4, 2::4] + bc[3::4, 2::4] + bc[::4, 3::4] + \ bc[1::4, 3::4] + bc[2::4, 3::4] + bc[3::4, 3::4] data_array[n] = bc s1_array.append( f['/entry/DASlogs/HB2C:Mot:s1.RBV/average_value'].value[0]) duration_array.append(float(f['/entry/duration'].value[0])) run_number_array.append(float(f['/entry/run_number'].value[0])) monitor_count_array.append( float(f['/entry/monitor1/total_counts'].value[0])) progress.report('Creating MDHistoWorkspace') createWS_alg = self.createChildAlgorithm("CreateMDHistoWorkspace", enableLogging=False) createWS_alg.setProperty("SignalInput", data_array) createWS_alg.setProperty("ErrorInput", np.sqrt(data_array)) createWS_alg.setProperty("Dimensionality", 3) createWS_alg.setProperty( "Extents", '0.5,{},0.5,{},0.5,{}'.format(y_dim + 0.5, x_dim + 0.5, number_of_runs + 0.5)) createWS_alg.setProperty( "NumberOfBins", '{},{},{}'.format(y_dim, x_dim, number_of_runs)) createWS_alg.setProperty("Names", 'y,x,scanIndex') createWS_alg.setProperty("Units", 'bin,bin,number') createWS_alg.execute() outWS = createWS_alg.getProperty("OutputWorkspace").value progress.report('Getting IDF') # Get the instrument and some logs from the first file; assume the rest are the same _tmp_ws = LoadEventNexus(runs[0], MetaDataOnly=True, EnableLogging=False) # The following logs should be the same for all runs RemoveLogs( _tmp_ws, KeepLogs= 'HB2C:Mot:detz,HB2C:Mot:detz.RBV,HB2C:Mot:s2,HB2C:Mot:s2.RBV,' 'HB2C:Mot:sgl,HB2C:Mot:sgl.RBV,HB2C:Mot:sgu,HB2C:Mot:sgu.RBV,' 'run_title,start_time,experiment_identifier,HB2C:CS:CrystalAlign:UBMatrix', EnableLogging=False) time_ns_array = _tmp_ws.run().startTime().totalNanoseconds( ) + np.append(0, np.cumsum(duration_array) * 1e9)[:-1] try: ub = np.array(re.findall( r'-?\d+\.*\d*', _tmp_ws.run().getProperty( 'HB2C:CS:CrystalAlign:UBMatrix').value[0]), dtype=float).reshape(3, 3) sgl = np.deg2rad(_tmp_ws.run().getProperty( 'HB2C:Mot:sgl.RBV').value[0]) # 'HB2C:Mot:sgl.RBV,1,0,0,-1' sgu = np.deg2rad(_tmp_ws.run().getProperty( 'HB2C:Mot:sgu.RBV').value[0]) # 'HB2C:Mot:sgu.RBV,0,0,1,-1' sgl_a = np.array([[1, 0, 0], [0, np.cos(sgl), np.sin(sgl)], [0, -np.sin(sgl), np.cos(sgl)]]) sgu_a = np.array([[np.cos(sgu), np.sin(sgu), 0], [-np.sin(sgu), np.cos(sgu), 0], [0, 0, 1]]) UB = sgl_a.dot(sgu_a).dot( ub) # Apply the Goniometer tilts to the UB matrix SetUB(_tmp_ws, UB=UB, EnableLogging=False) except (RuntimeError, ValueError): SetUB(_tmp_ws, EnableLogging=False) if grouping > 1: _tmp_group, _, _ = CreateGroupingWorkspace(InputWorkspace=_tmp_ws, EnableLogging=False) group_number = 0 for x in range(0, 480 * 8, grouping): for y in range(0, 512, grouping): group_number += 1 for j in range(grouping): for i in range(grouping): _tmp_group.dataY(y + i + (x + j) * 512)[0] = group_number _tmp_ws = GroupDetectors(InputWorkspace=_tmp_ws, CopyGroupingFromWorkspace=_tmp_group, EnableLogging=False) DeleteWorkspace(_tmp_group, EnableLogging=False) progress.report('Adding logs') # Hack: ConvertToMD is needed so that a deep copy of the ExperimentInfo can happen # outWS.addExperimentInfo(_tmp_ws) # This doesn't work but should, when you delete `ws` `outWS` also loses it's ExperimentInfo _tmp_ws = Rebin(_tmp_ws, '0,1,2', EnableLogging=False) _tmp_ws = ConvertToMD(_tmp_ws, dEAnalysisMode='Elastic', EnableLogging=False, PreprocDetectorsWS='__PreprocessedDetectorsWS') preprocWS = mtd['__PreprocessedDetectorsWS'] twotheta = preprocWS.column(2) azimuthal = preprocWS.column(3) outWS.copyExperimentInfos(_tmp_ws) DeleteWorkspace(_tmp_ws, EnableLogging=False) DeleteWorkspace('__PreprocessedDetectorsWS', EnableLogging=False) # end Hack add_time_series_property('s1', outWS.getExperimentInfo(0).run(), time_ns_array, s1_array) outWS.getExperimentInfo(0).run().getProperty('s1').units = 'deg' add_time_series_property('duration', outWS.getExperimentInfo(0).run(), time_ns_array, duration_array) outWS.getExperimentInfo(0).run().getProperty( 'duration').units = 'second' outWS.getExperimentInfo(0).run().addProperty('run_number', run_number_array, True) add_time_series_property('monitor_count', outWS.getExperimentInfo(0).run(), time_ns_array, monitor_count_array) outWS.getExperimentInfo(0).run().addProperty('twotheta', twotheta, True) outWS.getExperimentInfo(0).run().addProperty('azimuthal', azimuthal, True) setGoniometer_alg = self.createChildAlgorithm("SetGoniometer", enableLogging=False) setGoniometer_alg.setProperty("Workspace", outWS) setGoniometer_alg.setProperty("Axis0", 's1,0,1,0,1') setGoniometer_alg.setProperty("Average", False) setGoniometer_alg.execute() return outWS