Exemple #1
0
 def _two_factor_corrections_approximation(self, sample_workspace,
                                           container_workspace,
                                           factor_workspaces):
     acc = factor_workspaces['acc']
     ass = factor_workspaces['ass']
     minuend = Divide(sample_workspace, ass, StoreInADS=False)
     subtrahend = Divide(container_workspace, acc, StoreInADS=False)
     difference = Minus(minuend, subtrahend, OutputWorkspace="__difference")
     return difference
 def _divideByDirect(self, ws):
     """Divide ws by the direct beam."""
     ws = self._rebinToDirect(ws)
     directWS = self.getProperty(Prop.DIRECT_FOREGROUND_WS).value
     reflectivityWSName = self._names.withSuffix('reflectivity')
     reflectivityWS = Divide(
         LHSWorkspace=ws,
         RHSWorkspace=directWS,
         OutputWorkspace=reflectivityWSName,
         EnableLogging=self._subalgLogging)
     self._cleanup.cleanup(ws)
     reflectivityWS = common.correctForChopperOpenings(reflectivityWS, directWS, self._names, self._cleanup, self._subalgLogging)
     reflectivityWS.setYUnit('Reflectivity')
     reflectivityWS.setYUnitLabel('Reflectivity')
     return reflectivityWS
Exemple #3
0
    def _monitor_normalization(self, w, target):
        """
        Divide data by integrated monitor intensity

        Parameters
        ----------
        w: Mantid.EventsWorkspace
            Input workspace
        target: str
            Specify the entity the workspace refers to. Valid options are
            'sample', 'background', and 'vanadium'

        Returns
        -------
        Mantid.EventWorkspace
        """
        _t_mon = self._load_monitors(target)
        _t_mon = ConvertUnits(_t_mon, Target='Wavelength', Emode='Elastic')
        _t_mon = CropWorkspace(_t_mon,
                               XMin=self._wavelength_band[0],
                               XMax=self._wavelength_band[1])
        _t_mon = OneMinusExponentialCor(_t_mon,
                                        C='0.20749999999999999',
                                        C1='0.001276')
        _t_mon = Scale(_t_mon, Factor='1e-06', Operation='Multiply')
        _t_mon = Integration(_t_mon)  # total monitor count
        _t_w = Divide(w, _t_mon, OutputWorkspace=w.name())
        return _t_w
Exemple #4
0
def _normalizeToTime(ws, wsNames, wsCleanup, algorithmLogging):
    """Normalize to the 'actual_time' sample log."""
    log = ws.run()
    if not log.hasProperty('duration'):
        if not log.hasProperty('actual_time'):
            raise RuntimeError(
                "Cannot normalise to acquisition time: 'duration' missing from sample logs."
            )
        time = log.getProperty('actual_time').value
    else:
        time = log.getProperty('duration').value
    if time == 0:
        raise RuntimeError(
            "Cannot normalise to acquisition time: time is zero.")
    if time < 0:
        raise RuntimeError(
            "Cannot normalise to acquisition time: time is negative.")
    normalizedWSName = wsNames.withSuffix('normalized_to_time')
    normalizationFactorWsName = wsNames.withSuffix('normalization_factor_time')
    normalizationFactorWS = CreateSingleValuedWorkspace(
        OutputWorkspace=normalizationFactorWsName,
        DataValue=time,
        EnableLogging=algorithmLogging)
    normalizedWS = Divide(LHSWorkspace=ws,
                          RHSWorkspace=normalizationFactorWS,
                          OutputWorkspace=normalizedWSName,
                          EnableLogging=algorithmLogging)
    wsCleanup.cleanup(normalizationFactorWS)
    return normalizedWS
 def runTest(self):
     # load data for bank 1 (incl. monitor spectra 1-5)
     van = load_data_and_normalise('WISH/input/11_4/WISH00019612.raw',
                                   outputWorkspace="van")
     # create Abs Correction for V
     shape = '''<sphere id="V-sphere">
         <centre x="0.0"  y="0.0" z="0.0" />
         <radius val="0.0025"/>
         </sphere>'''
     CreateSampleShape(InputWorkspace=van, ShapeXML=shape)
     SetSampleMaterial(InputWorkspace=van,
                       SampleNumberDensity=0.0119,
                       ScatteringXSection=5.197,
                       AttenuationXSection=4.739,
                       ChemicalFormula='V0.95 Nb0.05')
     abs_cor = AbsorptionCorrection(InputWorkspace=van, ElementSize=0.5)
     # correct Vanadium run for absorption
     van = Divide(LHSWorkspace=van,
                  RHSWorkspace=abs_cor,
                  OutputWorkspace=van)
     # smooth data
     SmoothNeighbours(InputWorkspace=van,
                      OutputWorkspace=van,
                      Radius=3,
                      NumberOfNeighbours=6)
     SmoothData(InputWorkspace=van, OutputWorkspace=van, NPoints=300)
 def runTest(self):
     # Load processed vanadium for normalisation (bank 1)
     van = LoadNexus(Filename="WISH19612_vana_bank1_SXProcessed.nxs")
     # Load raw data (bank 1)
     ws = load_data_and_normalise(
         "WISH00038237.raw")  # default so doesn't get overwrite van
     # normalise to vanadium
     RebinToWorkspace(WorkspaceToRebin=van,
                      WorkspaceToMatch=ws,
                      OutputWorkspace=van)
     Divide(LHSWorkspace=ws, RHSWorkspace=van, OutputWorkspace=ws)
     ReplaceSpecialValues(InputWorkspace=ws,
                          OutputWorkspace=ws,
                          NaNValue=0,
                          InfinityValue=0,
                          BigNumberThreshold=1e15,
                          SmallNumberThreshold=-1e15)
     # Convert to Diffraction MD and Lorentz Correction
     wsMD = ConvertToDiffractionMDWorkspace(InputWorkspace=ws,
                                            LorentzCorrection=True,
                                            OneEventPerBin=False)
     # BinMD to 2D object and convert to histo so can compare saved workspace
     wsMD_2Dcut = BinMD(InputWorkspace=wsMD,
                        AxisAligned=False,
                        BasisVector0='Q_lab_x,Angstrom^-1,1.0,0.0,0.0',
                        BasisVector1='Q_lab_y,Angstrom^-1,0.0,1.0,0.0',
                        BasisVector2='Q_lab_z,Angstrom^-1,0.0,0.0,1.0',
                        OutputExtents='0.2,0.8,-0.4,0.4,0.05,0.1',
                        OutputBins='50,50,1')
     ConvertMDHistoToMatrixWorkspace(InputWorkspace=wsMD_2Dcut,
                                     outputWorkspace="wsHisto_2Dcut")
 def _waterCalibration(self, ws):
     """Divide ws by a (water) reference workspace."""
     if self.getProperty(Prop.WATER_REFERENCE).isDefault:
         return ws
     waterWS = self.getProperty(Prop.WATER_REFERENCE).value
     detWSName = self._names.withSuffix('water_detectors')
     waterWS = ExtractMonitors(InputWorkspace=waterWS,
                               DetectorWorkspace=detWSName,
                               EnableLogging=self._subalgLogging)
     if mtd.doesExist(detWSName) is None:
         raise RuntimeError('No detectors in the water reference data.')
     if waterWS.getNumberHistograms() != ws.getNumberHistograms():
         self.log().error(
             'Water workspace and run do not have the same number of histograms.'
         )
     rebinnedWaterWSName = self._names.withSuffix('water_rebinned')
     rebinnedWaterWS = RebinToWorkspace(WorkspaceToRebin=waterWS,
                                        WorkspaceToMatch=ws,
                                        OutputWorkspace=rebinnedWaterWSName,
                                        EnableLogging=self._subalgLogging)
     calibratedWSName = self._names.withSuffix('water_calibrated')
     calibratedWS = Divide(LHSWorkspace=ws,
                           RHSWorkspace=rebinnedWaterWS,
                           OutputWorkspace=calibratedWSName,
                           EnableLogging=self._subalgLogging)
     self._cleanup.cleanup(waterWS)
     self._cleanup.cleanup(rebinnedWaterWS)
     self._cleanup.cleanup(ws)
     return calibratedWS
Exemple #8
0
def reduceToPowder(ws,
                   OutputWorkspace,
                   norm=None,
                   taget='Theta',
                   XMin=10,
                   XMax=135,
                   NumberBins=2500):
    # Add scale by monitor
    ConvertSpectrumAxis(InputWorkspace=ws,
                        Target=taget,
                        OutputWorkspace=OutputWorkspace)
    Transpose(InputWorkspace=OutputWorkspace, OutputWorkspace=OutputWorkspace)
    ResampleX(InputWorkspace=OutputWorkspace,
              OutputWorkspace=OutputWorkspace,
              XMin=XMin,
              XMax=XMax,
              NumberBins=NumberBins)
    if norm is not None:
        ConvertSpectrumAxis(InputWorkspace=norm,
                            Target=taget,
                            OutputWorkspace='__norm')
        Transpose(InputWorkspace='__norm', OutputWorkspace='__norm')
        ResampleX(InputWorkspace='__norm',
                  OutputWorkspace='__norm',
                  XMin=XMin,
                  XMax=XMax,
                  NumberBins=NumberBins)
        Divide(LHSWorkspace=OutputWorkspace,
               RHSWorkspace='__norm',
               OutputWorkspace=OutputWorkspace)
        DeleteWorkspace('__norm')
    return OutputWorkspace
Exemple #9
0
 def performOperation(self):
     lhs_valid, rhs_valid, err_msg = self.validateInputs()
     if err_msg != str():
         return lhs_valid, rhs_valid, err_msg
     lhs_ws, rhs_ws = self._scale_input_workspaces()
     try:
         if self._operation == '+':
             if self._md_lhs or self._md_rhs:
                 PlusMD(LHSWorkspace=lhs_ws,
                        RHSWorkspace=rhs_ws,
                        OutputWorkspace=self._output_ws)
             else:
                 Plus(LHSWorkspace=lhs_ws,
                      RHSWorkspace=rhs_ws,
                      OutputWorkspace=self._output_ws)
         elif self._operation == '-':
             if self._md_lhs or self._md_rhs:
                 MinusMD(LHSWorkspace=lhs_ws,
                         RHSWorkspace=rhs_ws,
                         OutputWorkspace=self._output_ws)
             else:
                 Minus(LHSWorkspace=lhs_ws,
                       RHSWorkspace=rhs_ws,
                       OutputWorkspace=self._output_ws)
         elif self._operation == '*':
             if self._md_lhs or self._md_rhs:
                 MultiplyMD(LHSWorkspace=lhs_ws,
                            RHSWorkspace=rhs_ws,
                            OutputWorkspace=self._output_ws)
             else:
                 Multiply(LHSWorkspace=lhs_ws,
                          RHSWorkspace=rhs_ws,
                          OutputWorkspace=self._output_ws)
         elif self._operation == 'WM':
             if self._md_lhs or self._md_rhs:
                 WeightedMeanMD(LHSWorkspace=lhs_ws,
                                RHSWorkspace=rhs_ws,
                                OutputWorkspace=self._output_ws)
             else:
                 WeightedMean(InputWorkspace1=lhs_ws,
                              InputWorkspace2=rhs_ws,
                              OutputWorkspace=self._output_ws)
         else:
             if self._md_lhs or self._md_rhs:
                 DivideMD(LHSWorkspace=lhs_ws,
                          RHSWorkspace=rhs_ws,
                          OutputWorkspace=self._output_ws)
             else:
                 Divide(LHSWorkspace=lhs_ws,
                        RHSWorkspace=rhs_ws,
                        OutputWorkspace=self._output_ws)
     except (RuntimeError, ValueError) as err:
         return False, False, str(err)
     else:
         self._regularize_output_names(self._output_ws)
     finally:
         DeleteWorkspaces(WorkspaceList=[lhs_ws, rhs_ws])
     return True, True, ""
Exemple #10
0
 def _correct_sample(self, sample_workspace, a_ss_workspace):
     """
     Correct for sample only (when no container is given).
     """
     logger.information('Correcting sample')
     correction_in_lambda = self._convert_units_wavelength(a_ss_workspace)
     corrected = Divide(LHSWorkspace=sample_workspace,
                        RHSWorkspace=correction_in_lambda)
     return corrected
 def correctSampleData(self, sampleWsName, useVana, vanaWsName, useEmpty,
                       emptyWsName):
     if useEmpty:
         Minus(LHSWorkspace=sampleWsName,
               RHSWorkspace=emptyWsName,
               OutputWorkspace=sampleWsName)
     if useVana:
         Divide(LHSWorkspace=sampleWsName,
                RHSWorkspace=vanaWsName,
                OutputWorkspace=sampleWsName)
Exemple #12
0
def _normalise_by_integral(workspace):
    integrated = Integration(InputWorkspace=workspace,
                             OutputWorkspace="__integral",
                             StoreInADS=False,
                             EnableLogging=False)
    return Divide(LHSWorkspace=workspace,
                  RHSWorkspace=integrated,
                  OutputWorkspace="__divided",
                  StoreInADS=False,
                  EnableLogging=False)
Exemple #13
0
 def _three_factor_corrections_approximation(self, sample_workspace,
                                             container_workspace,
                                             factor_workspaces):
     acc = factor_workspaces['acc']
     acsc = factor_workspaces['acsc']
     assc = factor_workspaces['assc']
     subtrahend = Multiply(container_workspace, (acsc / acc),
                           StoreInADS=False)
     difference = Minus(sample_workspace, subtrahend, StoreInADS=False)
     quotient = Divide(difference, assc, OutputWorkspace="__quotient")
     return quotient
Exemple #14
0
    def _normalize_by_vanadium(diff_ws, van_ws, diff_ws_name):
        """ Normalize by vanadium
        :param van_ws:
        :param diff_ws_name:
        :return:
        """
        Divide(LHSWorkspace=diff_ws,
               RHSWorkspace=van_ws,
               OutputWorkspace=diff_ws_name)
        diff_ws = mantid_helper.retrieve_workspace(diff_ws_name)

        return diff_ws
Exemple #15
0
 def _applyCorrections(self, mainWS):
     """Applies self shielding corrections to a workspace, if corrections exist."""
     if self.getProperty(common.PROP_SELF_SHIELDING_CORRECTION_WS).isDefault:
         return mainWS, False
     correctionWS = self.getProperty(common.PROP_SELF_SHIELDING_CORRECTION_WS).value
     correctedWSName = self._names.withSuffix('self_shielding_corrected')
     correctedWS = Divide(LHSWorkspace=mainWS,
                          RHSWorkspace=correctionWS,
                          OutputWorkspace=correctedWSName,
                          EnableLogging=self._subalgLogging)
     self._cleanup.cleanup(mainWS)
     return correctedWS, True
Exemple #16
0
 def _divideByDirect(self, ws, directWS):
     """Divide ws by the direct beam."""
     reflectivityWSName = self._names.withSuffix('reflectivity')
     reflectivityWS = Divide(LHSWorkspace=ws,
                             RHSWorkspace=directWS,
                             OutputWorkspace=reflectivityWSName,
                             EnableLogging=self._subalgLogging)
     self._cleanup.cleanup(directWS)
     reflectivityWS.setYUnit('Reflectivity')
     reflectivityWS.setYUnitLabel('Reflectivity')
     # The X error data is lost in Divide.
     reflectivityWS.setDx(0, ws.readDx(0))
     self._cleanup.cleanup(ws)
     return reflectivityWS
Exemple #17
0
 def _normalizeToVana(self, mainWS):
     """Normalize to vanadium workspace."""
     if self.getProperty(common.PROP_VANA_WS).isDefault:
         return mainWS
     vanaWS = self.getProperty(common.PROP_VANA_WS).value
     vanaNormalizedWSName = self._names.withSuffix('vanadium_normalized')
     vanaNormalizedWS = Divide(LHSWorkspace=mainWS,
                               RHSWorkspace=vanaWS,
                               OutputWorkspace=vanaNormalizedWSName,
                               EnableLogging=self._subalgLogging)
     self._cleanup.cleanup(mainWS)
     if self.getProperty(common.PROP_ABSOLUTE_UNITS).value == common.ABSOLUTE_UNITS_ON:
         vanaNormalizedWS = _absoluteUnits(vanaNormalizedWS, vanaWS)
     return vanaNormalizedWS
Exemple #18
0
    def _sensitivity_correction(self, w):
        """
        Divide each pixel by the vanadium count

        Parameters
        ----------
        w: Events workspace in units of wavelength
        Returns
        -------
        Mantid.EventWorkspace
        """
        MaskDetectors(w, MaskedWorkspace=self._v_mask)
        _t_w = Divide(w, self._van, OutputWorkspace=w.name())
        return _t_w
 def processVana(self, wsName):
     CylinderAbsorption(InputWorkspace=wsName,
                        OutputWorkspace='Atten',
                        AttenuationXSection=self._attenuationXSection,
                        ScatteringXSection=self._scatteringXSection,
                        SampleNumberDensity=self._sampleNumberDensity,
                        NumberOfWavelengthPoints=self._numberOfWavelengthPoints,
                        ExpMethod=self._expMethod,
                        EMode=self._eMode,
                        EFixed=self._eFixed,
                        CylinderSampleHeight=self._cylinderSampleHeight,
                        CylinderSampleRadius=self._cylinderSampleRadius,
                        NumberOfSlices=self._numberOfSlices,
                        NumberOfAnnuli=self._numberOfAnnuli)
     Divide(LHSWorkspace=wsName, RHSWorkspace='Atten', OutputWorkspace=wsName)
Exemple #20
0
    def __processFile(self, filename, wkspname, file_prog_start, determineCharacterizations):
        chunks = determineChunking(filename, self.chunkSize)
        self.log().information('Processing \'%s\' in %d chunks' % (filename, len(chunks)))
        prog_per_chunk_step = self.prog_per_file * 1./(6.*float(len(chunks))) # for better progress reporting - 6 steps per chunk

        # inner loop is over chunks
        for (j, chunk) in enumerate(chunks):
            prog_start = file_prog_start + float(j) * 5. * prog_per_chunk_step
            chunkname = "%s_c%d" % (wkspname, j)
            Load(Filename=filename, OutputWorkspace=chunkname,
                 startProgress=prog_start, endProgress=prog_start+prog_per_chunk_step,
                 **chunk)
            if determineCharacterizations:
                self.__determineCharacterizations(filename, chunkname, False) # updates instance variable
                determineCharacterizations = False

            prog_start += prog_per_chunk_step
            if self.filterBadPulses > 0.:
                FilterBadPulses(InputWorkspace=chunkname, OutputWorkspace=chunkname,
                                LowerCutoff=self.filterBadPulses,
                                startProgress=prog_start, endProgress=prog_start+prog_per_chunk_step)
            prog_start += prog_per_chunk_step

            # absorption correction workspace
            if self.absorption is not None and len(str(self.absorption)) > 0:
                ConvertUnits(InputWorkspace=chunkname, OutputWorkspace=chunkname,
                             Target='Wavelength', EMode='Elastic')
                Divide(LHSWorkspace=chunkname, RHSWorkspace=self.absorption, OutputWorkspace=chunkname,
                       startProgress=prog_start, endProgress=prog_start+prog_per_chunk_step)
                ConvertUnits(InputWorkspace=chunkname, OutputWorkspace=chunkname,
                             Target='TOF', EMode='Elastic')
            prog_start += prog_per_chunk_step

            AlignAndFocusPowder(InputWorkspace=chunkname, OutputWorkspace=chunkname,
                                startProgress=prog_start, endProgress=prog_start+2.*prog_per_chunk_step,
                                **self.kwargs)
            prog_start += 2.*prog_per_chunk_step # AlignAndFocusPowder counts for two steps

            if j == 0:
                self.__updateAlignAndFocusArgs(chunkname)
                RenameWorkspace(InputWorkspace=chunkname, OutputWorkspace=wkspname)
            else:
                Plus(LHSWorkspace=wkspname, RHSWorkspace=chunkname, OutputWorkspace=wkspname,
                     ClearRHSWorkspace=self.kwargs['PreserveEvents'],
                     startProgress=prog_start, endProgress=prog_start+prog_per_chunk_step)
                DeleteWorkspace(Workspace=chunkname)
                if self.kwargs['PreserveEvents']:
                    CompressEvents(InputWorkspace=wkspname, OutputWorkspace=wkspname)
Exemple #21
0
def reduceToPowder(ws,
                   OutputWorkspace,
                   cal=None,
                   target='Theta',
                   XMin=10,
                   XMax=135,
                   NumberBins=2500,
                   normaliseBy='Monitor'):
    ConvertSpectrumAxis(InputWorkspace=ws,
                        Target=target,
                        OutputWorkspace=OutputWorkspace)
    Transpose(InputWorkspace=OutputWorkspace, OutputWorkspace=OutputWorkspace)
    ResampleX(InputWorkspace=OutputWorkspace,
              OutputWorkspace=OutputWorkspace,
              XMin=XMin,
              XMax=XMax,
              NumberBins=NumberBins)

    if cal is not None:
        CopyInstrumentParameters(ws, cal)
        ConvertSpectrumAxis(InputWorkspace=cal,
                            Target=target,
                            OutputWorkspace='__cal')
        Transpose(InputWorkspace='__cal', OutputWorkspace='__cal')
        ResampleX(InputWorkspace='__cal',
                  OutputWorkspace='__cal',
                  XMin=XMin,
                  XMax=XMax,
                  NumberBins=NumberBins)
        Divide(LHSWorkspace=OutputWorkspace,
               RHSWorkspace='__cal',
               OutputWorkspace=OutputWorkspace)
        DeleteWorkspace('__cal')

    if normaliseBy == "Monitor":
        ws_monitor = mtd[ws].run().getProtonCharge()
        cal_monitor = mtd[cal].run().getProtonCharge()
        Scale(InputWorkspace=OutputWorkspace,
              OutputWorkspace=OutputWorkspace,
              Factor=cal_monitor / ws_monitor)
    elif normaliseBy == "Time":
        ws_duration = mtd[ws].run().getLogData('duration').value
        cal_duration = mtd[cal].run().getLogData('duration').value
        Scale(InputWorkspace=OutputWorkspace,
              OutputWorkspace=OutputWorkspace,
              Factor=cal_duration / ws_duration)

    return OutputWorkspace
Exemple #22
0
def fold_chopped(workspace_name):
    """
    Folds multiple frames of a data set into one workspace.

    @param workspace_name Name of the group to fold
    """
    from mantid.simpleapi import (MergeRuns, DeleteWorkspace, CreateWorkspace,
                                  Divide)

    workspaces = mtd[workspace_name].getNames()
    merged_ws = workspace_name + '_merged'
    MergeRuns(InputWorkspaces=','.join(workspaces), OutputWorkspace=merged_ws)

    scaling_ws = '__scaling_ws'
    unit = mtd[workspace_name].getItem(0).getAxis(0).getUnit().unitID()

    ranges = []
    for ws in mtd[workspace_name].getNames():
        x_min = mtd[ws].dataX(0)[0]
        x_max = mtd[ws].dataX(0)[-1]
        ranges.append((x_min, x_max))
        DeleteWorkspace(Workspace=ws)

    data_x = mtd[merged_ws].readX(0)
    data_y = []
    data_e = []

    for i in range(0, mtd[merged_ws].blocksize()):
        y_val = 0.0
        for rng in ranges:
            if rng[0] <= data_x[i] <= rng[1]:
                y_val += 1.0

        data_y.append(y_val)
        data_e.append(0.0)

    CreateWorkspace(OutputWorkspace=scaling_ws,
                    DataX=data_x,
                    DataY=data_y,
                    DataE=data_e,
                    UnitX=unit)

    Divide(LHSWorkspace=merged_ws,
           RHSWorkspace=scaling_ws,
           OutputWorkspace=workspace_name)

    DeleteWorkspace(Workspace=merged_ws)
    DeleteWorkspace(Workspace=scaling_ws)
Exemple #23
0
def divide_workspace(dividend_workspace, divisor_workspace):
    """
    Divides the specified dividend workspace by the specified divisor workspace.
    Replaces Infinity and NaNValues with 0.

    :param dividend_workspace: The workspace to be divided.
    :param divisor_workspace:  The workspace to divide by.
    :return:                   The dividend workspace / the divisor workspace.
    """
    dividend_ws, divisor_ws = rebin_to_smallest(dividend_workspace, divisor_workspace)
    divided_ws = Divide(LHSWorkspace=dividend_ws, RHSWorkspace=divisor_ws,
                        OutputWorkspace="divided", StoreInADS=False, EnableLogging=False)
    return ReplaceSpecialValues(InputWorkspace=divided_ws,
                                NaNValue=0.0, InfinityValue=0.0,
                                OutputWorkspace="removed_special",
                                StoreInADS=False, EnableLogging=False)
 def _divideByDirect(self, ws, directWS):
     """Divide ws by the direct beam."""
     reflectivityWSName = self._names.withSuffix('reflectivity')
     reflectivityWS = Divide(
         LHSWorkspace=ws,
         RHSWorkspace=directWS,
         OutputWorkspace=reflectivityWSName,
         EnableLogging=self._subalgLogging)
     self._cleanup.cleanup(directWS)
     reflectivityWS.setYUnit('Reflectivity')
     reflectivityWS.setYUnitLabel('Reflectivity')
     # The X error data is lost in Divide.
     reflectivityWS.setDx(0, ws.readDx(0))
     self._cleanup.cleanup(ws)
     return reflectivityWS
 def _divideByDirect(self, ws):
     """Divide ws by the direct beam."""
     ws = self._rebinToDirect(ws)
     directWS = self.getProperty(Prop.DIRECT_FOREGROUND_WS).value
     reflectivityWSName = self._names.withSuffix('reflectivity')
     reflectivityWS = Divide(LHSWorkspace=ws,
                             RHSWorkspace=directWS,
                             OutputWorkspace=reflectivityWSName,
                             EnableLogging=self._subalgLogging)
     self._cleanup.cleanup(ws)
     reflectivityWS.setYUnit('Reflectivity')
     reflectivityWS.setYUnitLabel('Reflectivity')
     return reflectivityWS
Exemple #26
0
 def runTest(self):
     try:
         BASISPowderDiffraction(RunNumbers='74799',
                                FluxNormalizationType='Monitor',
                                OutputWorkspace='powder_Mon',
                                MaskFile='BASIS_Mask_default_diff.xml')
         BASISPowderDiffraction(RunNumbers='74799',
                                FluxNormalizationType='Proton Charge',
                                OutputWorkspace='powder_Pro',
                                MaskFile='BASIS_Mask_default_diff.xml')
         Divide(LHSWorkspace='powder_Pro',
                RHSWorkspace='powder_Mon',
                OutputWorkspace='powder_ratio')
         ReplaceSpecialValues(InputWorkspace='powder_ratio',
                              NANValue=1.0,
                              NANError=1.0,
                              OutputWorkspace='powder_ratio')
     finally:
         self.preptear()
Exemple #27
0
    def _resample_background(
        self,
        current_background,
        current_workspace,
        make_name,
        x_min,
        x_max,
        resampled_calibration,
    ):
        """Perform resample on given background"""

        # create unique name for this background
        outname = str(current_background) + str(current_workspace)
        self.temp_workspace_list.append(outname)

        self._to_spectrum_axis_resample(current_background, outname, make_name,
                                        current_workspace, x_min, x_max)

        if resampled_calibration:
            Divide(
                LHSWorkspace=outname,
                RHSWorkspace=resampled_calibration,
                OutputWorkspace=outname,
                EnableLogging=False,
            )

        cal = self.getProperty("CalibrationWorkspace").valueAsStr
        Scale(
            InputWorkspace=outname,
            OutputWorkspace=outname,
            Factor=self._get_scale(cal) / self._get_scale(current_background),
            EnableLogging=False,
        )

        Scale(
            InputWorkspace=outname,
            OutputWorkspace=outname,
            Factor=self.getProperty("BackgroundScale").value,
            EnableLogging=False,
        )

        return outname
 def _waterCalibration(self, ws):
     """Divide ws by a (water) reference workspace."""
     if self.getProperty(Prop.WATER_REFERENCE).isDefault:
         return ws
     waterWS = self.getProperty(Prop.WATER_REFERENCE).value
     # input validation for InputWorkspace compatibility, but runs?
     if waterWS.getNumberHistograms() != ws.getNumberHistograms():
         self.log().error('Water workspace and run do not have the same number of histograms.')
     rebinnedWaterWSName = self._names.withSuffix('water_rebinned')
     rebinnedWaterWS = RebinToWorkspace(WorkspaceToRebin=waterWS,
                                        WorkspaceToMatch=ws,
                                        OutputWorkspace=rebinnedWaterWSName,
                                        EnableLogging=self._subalgLogging)
     calibratedWSName = self._names.withSuffix('water_calibrated')
     calibratedWS = Divide(LHSWorkspace=ws,
                           RHSWorkspace=rebinnedWaterWS,
                           OutputWorkspace=calibratedWSName,
                           EnableLogging=self._subalgLogging)
     self._cleanup.cleanup(rebinnedWaterWS)
     self._cleanup.cleanup(ws)
     return calibratedWS
Exemple #29
0
def convert_to_2theta(ws_name, num_bins=1000):
    """
    """
    # duplicate for vanadium
    vanadium = CloneWorkspace(InputWorkspace=ws_name,
                              OutputWorkspace='vanadium')

    # transfer to 2theta for data
    ConvertSpectrumAxis(InputWorkspace=ws_name,
                        OutputWorkspace=ws_name,
                        Target='Theta')
    Transpose(InputWorkspace=ws_name, OutputWorkspace=ws_name)
    ResampleX(InputWorkspace=ws_name,
              OutputWorkspace=ws_name,
              NumberBins=num_bins,
              PreserveEvents=False)

    # vanadium: set to 1 for now
    time_van_start = time.time()
    for iws in range(vanadium.getNumberHistograms()):
        vanadium.dataY(iws)[0] = 1.
    time_van_stop = time.time()
    ConvertSpectrumAxis(InputWorkspace='vanadium',
                        OutputWorkspace='vanadium',
                        Target='Theta')
    Transpose(InputWorkspace='vanadium', OutputWorkspace='vanadium')
    ResampleX(InputWorkspace='vanadium',
              OutputWorkspace='vanadium',
              NumberBins=num_bins,
              PreserveEvents=False)

    norm_ws_name = ws_name + '_normalized'
    Divide(LHSWorkspace=ws_name,
           RHSWorkspace='vanadium',
           OutputWorkspace=norm_ws_name)

    print('Create vanadium workspace : {} seconds'.format(time_van_stop -
                                                          time_van_start))

    return norm_ws_name
Exemple #30
0
def _integrateElasticPeaks(ws, eppWS, sigmaMultiplier, wsNames, wsCleanup,
                           algorithmLogging):
    """Return a workspace integrated around the elastic peak."""
    histogramCount = ws.getNumberHistograms()
    integrationBegins = numpy.empty(histogramCount)
    integrationEnds = numpy.empty(histogramCount)
    for i in range(histogramCount):
        eppRow = eppWS.row(i)
        if eppRow['FitStatus'] != 'success':
            integrationBegins[i] = 0
            integrationEnds[i] = 0
            continue
        peakCentre = eppRow['PeakCentre']
        sigma = eppRow['Sigma']
        integrationBegins[i] = peakCentre - sigmaMultiplier * sigma
        integrationEnds[i] = peakCentre + sigmaMultiplier * sigma
    integratedElasticPeaksWSName = \
        wsNames.withSuffix('integrated_elastic_peak')
    integratedElasticPeaksWS = \
        Integration(InputWorkspace=ws,
                    OutputWorkspace=integratedElasticPeaksWSName,
                    IncludePartialBins=True,
                    RangeLowerList=integrationBegins,
                    RangeUpperList=integrationEnds,
                    EnableLogging=algorithmLogging)
    solidAngleWSName = wsNames.withSuffix('detector_solid_angles')
    solidAngleWS = SolidAngle(InputWorkspace=ws,
                              OutputWorkspace=solidAngleWSName,
                              EnableLogging=algorithmLogging)
    solidAngleCorrectedElasticPeaksWSName = \
        wsNames.withSuffix('solid_angle_corrected_elastic_peak')
    solidAngleCorrectedElasticPeaksWS = \
        Divide(LHSWorkspace=integratedElasticPeaksWS,
               RHSWorkspace=solidAngleWS,
               OutputWorkspace=solidAngleCorrectedElasticPeaksWSName,
               EnableLogging=algorithmLogging)
    wsCleanup.cleanup(integratedElasticPeaksWS)
    wsCleanup.cleanup(solidAngleWS)
    return solidAngleCorrectedElasticPeaksWS
Exemple #31
0
 def _run_focus(input_workspace, tof_output_name, curves, grouping_ws,
                region_calib) -> None:
     """Focus the processed full instrument workspace over the chosen region of interest
     :param input_workspace: Processed full instrument workspace converted to dSpacing
     :param tof_output_name: Name for the time-of-flight output workspace
     :param curves: Workspace containing the vanadium curves for this region of interest
     :param grouping_ws: Grouping workspace to pass to DiffractionFocussing
     :param region_calib: Region of interest calibration workspace (table ws output from PDCalibration)
     """
     # rename workspace prior to focussing to avoid errors later
     dspacing_output_name = tof_output_name + "_dSpacing"
     # focus sample over specified region of interest
     focused_sample = DiffractionFocussing(
         InputWorkspace=input_workspace,
         OutputWorkspace=dspacing_output_name,
         GroupingWorkspace=grouping_ws)
     curves_rebinned = RebinToWorkspace(WorkspaceToRebin=curves,
                                        WorkspaceToMatch=focused_sample)
     # flux correction - divide focused sample data by rebinned focused vanadium curve data
     Divide(LHSWorkspace=focused_sample,
            RHSWorkspace=curves_rebinned,
            OutputWorkspace=focused_sample,
            AllowDifferentNumberSpectra=True)
     # apply calibration from specified region of interest
     ApplyDiffCal(InstrumentWorkspace=focused_sample,
                  CalibrationWorkspace=region_calib)
     # set bankid for use in fit tab
     run = focused_sample.getRun()
     if region_calib.name() == "engggui_calibration_bank_1":
         run.addProperty("bankid", 1, True)
     elif region_calib.name() == "engggui_calibration_bank_2":
         run.addProperty("bankid", 2, True)
     else:
         run.addProperty("bankid", 3, True)
     # output in both dSpacing and TOF
     ConvertUnits(InputWorkspace=focused_sample,
                  OutputWorkspace=tof_output_name,
                  Target='TOF')
     DeleteWorkspace(curves_rebinned)
Exemple #32
0
def scale_detectors(workspace_name, e_mode='Indirect'):
    """
    Scales detectors by monitor intensity.

    @param workspace_name Name of detector workspace
    @param e_mode Energy mode (Indirect for spectroscopy, Elastic for diffraction)
    """
    from mantid.simpleapi import (ConvertUnits, RebinToWorkspace, Divide)

    monitor_workspace_name = workspace_name + '_mon'

    ConvertUnits(InputWorkspace=workspace_name,
                 OutputWorkspace=workspace_name,
                 Target='Wavelength',
                 EMode=e_mode)

    RebinToWorkspace(WorkspaceToRebin=workspace_name,
                     WorkspaceToMatch=monitor_workspace_name,
                     OutputWorkspace=workspace_name)

    Divide(LHSWorkspace=workspace_name,
           RHSWorkspace=monitor_workspace_name,
           OutputWorkspace=workspace_name)