Exemple #1
0
visualize_rgb(map1.weights)

# +

classification

# +

    
    

# +
tens_try = map1.weights.view(length, width, 3)
plt.imshow(tens_try)

classification = map1.classify_all(map1.convert_data_tensor(data))
for i in range(len(classification)):
    loc_tuple = map1.get_location(classification[i])
    plt.text(loc_tuple[1], loc_tuple[0], color_names[i], ha='center', va='center',
         bbox=dict(facecolor='white', alpha=0.5, lw=0))
z
# plt.text(0, 1, color_names[1], ha='center', va='center',
#          bbox=dict(facecolor='white', alpha=0.5, lw=0))
plt.show()
# -

visualize_rgb(map1)


Exemple #2
0
                                              shuffle=True)

    return trainloader, dim, number_rows_data


# -


def large_cycle(map_, training_data):
    basic_visualization(map_display(map_.map))
    print(map_display(map_.map))
    for i in range(number_iterations):
        cycle(map_, training_data)
    basic_visualization(map_display(map_.map))
    print(map_display(map_.map))


training, dim, number_rows_data = load_data(data)

map1 = MapClass(length, width, dim, move_closer_coef, number_iterations)

map1.weights_to_map()

map1.step(training, verbose=True)

map1.cycle(training, verbose=True)

map1.classify_all(map1.convert_data_tensor(data))

map1.convert_data_tensor(data)