Exemple #1
0
def test_motion_model():
    ### Generate test input
    np.random.seed(10000)
    np.set_printoptions(precision=4, suppress=True)
    map_obj = MapReader('../data/map/wean.dat')
    occupancy_map = map_obj.get_map()

    # # generate a random particle, then sent out beams from that location
    # h, w = occupancy_map.shape
    # indices = np.where(occupancy_map.flatten() == 0)[0]
    # ind = np.random.choice(indices, 1)[0]
    # y, x = ind // w, ind % w
    # theta = np.pi / 2
    # X = np.array([[x, y, theta]])
    # X[:, :2] *= 10

    h, w = occupancy_map.shape
    flipped_occupancy_map = occupancy_map[::-1, :]
    y, x = np.where(flipped_occupancy_map == 0)
    valid_indices = np.where((350 <= y) & (y <= 450) & (350 <= x) & (x <= 450))[0]
    ind = indices = np.random.choice(valid_indices, 1)[0]
    y, x = y[ind], x[ind]
    # y, x = ind // w, ind % w
    theta = np.pi / 4
    X = np.array([[x, y, theta]])
    X[:, :2] *= 10
    print(X)

    # define motion control u, test on shift-only
    theta1 = np.pi / 2
    u_t1 = np.array([1049.833130, 28.126379, -2.664653])
    u_t2 = np.array([1048.641235, 27.560303, -2.659024])

    # motion model
    motion = MotionModel()
    X_t2 = motion.update(u_t1, u_t2, X)
    print(X_t2)

    print(f'X: {X}, X_t2: {X_t2}')

    # plot
    plt.figure(1)
    plt.imshow(occupancy_map, cmap='Greys')
    plt.axis([0, 800, 0, 800])

    x_loc = X[:, 0] / 10.
    y_loc = X[:, 1] / 10.
    plt.scatter(x_loc, y_loc, c='r', marker='o')

    x_loc = X_t2[:, 0] / 10.
    y_loc = X_t2[:, 1] / 10.
    plt.scatter(x_loc, y_loc, c='y', marker='o')
    plt.show()
Exemple #2
0
def test_hyperparameter():
    np.random.seed(10008)
    map_obj = MapReader('../data/map/wean.dat')
    occupancy_map = map_obj.get_map()

    # generate a random particle, then sent out beams from that location
    # indices = np.where(occupancy_map.flatten() == 0)[0]
    # ind = np.random.choice(indices, 1)[0]
    # y, x = ind // w, ind % w
    # theta = -np.pi / 2
    # angle = np.pi * (40 / 180)
    X = init_particles_freespace(1, occupancy_map)

    sensor = SensorModel(occupancy_map)
    X = X.reshape(1, -1)
    z_t_star = sensor.ray_casting(X[:, :3], num_beams=10)
    print(z_t_star)
    print(z_t_star.max())

    z = np.arange(sensor._max_range + 2).astype(np.float)
    p_hit, p_short, p_max, p_rand = sensor.estimate_density(z, z_t_star[0][5])
    # plot(1, p_hit)
    # plot(2, p_short)
    # plot(3, p_max)
    # plot(4, p_rand)

    # w_hit = 3 # 99 / 2 / 2.5 / 4  # 1.
    # w_short = 0.05 # 2 * 198 / 4 / 2.5 / 4  # 1
    # w_max = 0.1 # 49 / 2.5 / 4  # 0.5
    # w_rand = 10 # 990 / 4  # 5

    # self._z_hit = 99 / 2 / 2.5 / 4  # 1.
    # self._z_short = 198 / 4 // 2.5 / 4  # 1
    # self._z_max = 49 / 2.5 / 4  # 0.5
    # self._z_rand = 990 / 4  # 5

    # w_hit = 1.
    # w_short = 0.1
    # w_max = 0.5
    # w_rand = 10

    w_hit = 1000  # 99 / 2 / 2.5 / 4  # 1.
    w_short = 0.01  # 2 * 198 / 4 / 2.5 / 4  # 1
    w_max = 0.03  # 49 / 4 / 4  # 0.5
    w_rand = 12500

    p = sensor._z_hit * p_hit + sensor._z_short * p_short + sensor._z_max * p_max + sensor._z_rand * p_rand
    plot(5, p)
    plt.show()
Exemple #3
0
    def __init__(self, bag_info):
        bag_name, map_name, _, _ = bag_info

        self.map_reader = MapReader(map_name)

        # Cameras
        self.cam_ids = [1]
        self.cameras = [
            Camera(cam_id, camera_calibs[cam_id]) for cam_id in self.cam_ids
        ]

        # Visualizers
        self.camera_visualizers = {
            camera.cam_id: CameraPoseVisualizer(camera)
            for camera in self.cameras
        }
Exemple #4
0
def test_ground_truth_motion():
    # Read map
    np.random.seed(10000)
    np.set_printoptions(precision=4, suppress=True)
    map_obj = MapReader('../data/map/wean.dat')
    occupancy_map = map_obj.get_map()

    # specify ground truth location
    X = np.array([[4200, 4000, np.pi*(170/180.)]])
    motion_model = MotionModel()

    with open('../data/log/robotdata1.log', 'r') as f:
        logfile = f.readlines()

    visualize_map(occupancy_map)
    visualize_timestep(X, 0, '../tmp')

    first_time_idx = True
    for time_idx, line in enumerate(logfile):
        meas_type = line[0]
        meas_vals = np.fromstring(line[2:], dtype=np.float64, sep=' ')
        odometry_robot = meas_vals[0:3]
        time_stamp = meas_vals[-1]

        if (meas_type == "L"):
            # [x, y, theta] coordinates of laser in odometry frame
            odometry_laser = meas_vals[3:6]
            # 180 range measurement values from single laser scan
            ranges = meas_vals[6:-1]

        # print("Processing time step {} at time {}s".format(
        #     time_idx, time_stamp))

        if first_time_idx:
            u_t0 = odometry_robot
            first_time_idx = False
            continue

        if meas_type == "O":
            continue
        u_t1 = odometry_robot

        # Update motion
        X = motion_model.update(u_t0, u_t1, X)
        u_t0 = u_t1

        visualize_timestep(X, time_idx, '../tmp')
def test_raycasting_vectorize():

    np.random.seed(10008)
    map_obj = MapReader('../data/map/wean.dat')
    occupancy_map = map_obj.get_map()

    # generate a random particle, then sent out beams from that location
    h, w = occupancy_map.shape
    indices = np.where(occupancy_map.flatten() == 0)[0]
    ind = np.random.choice(indices, 1)[0]
    y, x = ind // w, ind % w
    theta = np.pi / 2
    X = np.array([[x, y, theta]])
    X = np.repeat(X, 2, axis=0)
    X[:, :2] *= 10

    num_beams = 180
    sensor = SensorModel(occupancy_map)
    z_t_star = sensor.ray_casting(X, num_beams=num_beams)

    x0, y0 = X[0, :2]
    angle = np.arange(num_beams) * (np.pi / num_beams)
    angle = theta + angle - np.pi / 2
    x1 = x0 + z_t_star * np.cos(angle)
    y1 = y0 - z_t_star * np.sin(angle)

    x0, y0 = x0 / 10, y0 / 10
    x1, y1 = x1 / 10, y1 / 10
    # plot figure
    fig = plt.figure()
    plt.imshow(occupancy_map)
    plt.scatter(x0, y0, c='red')
    plt.scatter(x1, y1, c='yellow')
    print(f'(x0, y0): ({x0}, {y0}), (x1, y1): ({x1}, {y1})')
    # plt.plot((x0, x1), (y0, y1), color='yellow')

    plt.show()
    print(z_t_star)
Exemple #6
0
class LocalizationVisualizer:
    def __init__(self, bag_info):
        bag_name, map_name, _, _ = bag_info

        self.map_reader = MapReader(map_name)

        # Cameras
        self.cam_ids = [1]
        self.cameras = [
            Camera(cam_id, camera_calibs[cam_id]) for cam_id in self.cam_ids
        ]

        # Visualizers
        self.camera_visualizers = {
            camera.cam_id: CameraPoseVisualizer(camera)
            for camera in self.cameras
        }

    def visualize(self, data, prediction):
        vis_images = {}

        # Get landmarks
        localization = prediction['localization']
        landmarks = self.map_reader.get_landmarks(localization)

        # Visualize each camera fitting
        for cam_id in self.cam_ids:
            img = data[cam_id]

            pose_info = {}
            pose_info['localization'] = localization
            pose_info['tcw'] = prediction['cam{}_tcw'.format(cam_id)]

            cam_visualizer = self.camera_visualizers[cam_id]
            vis_images[cam_id] = cam_visualizer.visualize(
                img, pose_info, landmarks)
        return vis_images

    def show(self, vis_images):
        for name in vis_images:
            cv.imshow(name, vis_images[name])
        cv.waitKey(1)
Exemple #7
0
        dist[oor_indices] = (self._max_range / 10.)
        indices.append(oor_indices)

        indices = np.concatenate(indices)
        mask = np.zeros((X.shape[0], ), dtype=np.bool)
        mask[indices] = True
        return mask


def log_sum(p):
    return np.sum(np.log(p), axis=1)


if __name__ == '__main__':
    np.random.seed(10008)
    map_obj = MapReader('../data/map/wean.dat')
    occupancy_map = map_obj.get_map()

    # generate a random particle, then sent out beams from that location
    h, w = occupancy_map.shape
    indices = np.where(occupancy_map.flatten() == 0)[0]
    ind = np.random.choice(indices, 1)[0]
    y, x = ind // w, ind % w
    theta = np.pi / 2
    angle = np.pi * (95. / 180)

    sensor = SensorModel(occupancy_map)
    z_t_star = sensor.ray_casting_one_direction((x, y, theta), occupancy_map,
                                                angle)

    x0, y0 = x, y
import numpy as np
import math
import time
from matplotlib import pyplot as plt
from scipy.stats import norm
from scipy.stats import expon
import pdb

from map_reader import MapReader
from sensor_model import SensorModel
from collections import defaultdict

src_path_map = '../data/map/wean.dat'
map_obj = MapReader(src_path_map)
occupancy_map = map_obj.get_map()

_min_probability = 0.35
_max_range = 1000
bool_occ_map = (occupancy_map < _min_probability) & (occupancy_map >= 0)

walk_stride = 5


def ray_cast(laser_x_t1, laser_y_t1, laser_theta, walk_stride):

    x_end = laser_x_t1
    y_end = laser_y_t1
    x_idx = min(int(np.around(x_end / 10)), 799)
    y_idx = min(int(np.around(y_end / 10)), 799)

    temp_location = bool_occ_map[y_idx][x_idx]