def main(): """MAIN""" # Video source from webcam or video file. video_src = args.cam if args.cam is not None else args.video if video_src is None: print("Warning: video source not assigned, default webcam will be used.") video_src = 0 cap = cv.VideoCapture(video_src) if video_src == 0: cap.set(cv.CAP_PROP_FRAME_WIDTH, 640) _, sample_frame = cap.read() # Introduce mark_detector to detect landmarks. mark_detector = MarkDetector() # Setup process and queues for multiprocessing. img_queue = Queue() box_queue = Queue() img_queue.put(sample_frame) box_process = Process(target=get_face, args=( mark_detector, img_queue, box_queue,)) box_process.start() while True: # Read frame, crop it, flip it, suits your needs. frame_got, frame = cap.read() if frame_got is False: break # If frame comes from webcam, flip it so it looks like a mirror. if video_src == 0: frame = cv.flip(frame, 2) # Feed frame to image queue. img_queue.put(frame) # Get face from box queue. facebox = box_queue.get() if facebox is not None: mark_detector.draw_box(frame, [facebox], box_color=(255, 125, 0)) # Show preview. cv.imshow("Preview", frame) if cv.waitKey(10) == 27: # press ESC key break # Clean up the multiprocessing process. box_process.terminate() box_process.join()
def main(): # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-m", "--draw-markers", action="store_true", default=False, help="") ap.add_argument("-c", "--draw-confidence", action="store_true", default=False, help="") ap.add_argument("-t", "--confidence-threshold", type=float, default=0.9, help="") ap.add_argument("-p", "--draw-pose", action="store_false", default=True, help="") ap.add_argument("-u", "--draw-unstable", action="store_true", default=False, help="") ap.add_argument("-s", "--draw-segmented", action="store_true", default=False, help="") args = vars(ap.parse_args()) confidence_threshold = args["confidence_threshold"] """MAIN""" # Video source from webcam or video file. video_src = 0 cam = cv2.VideoCapture(video_src) _, sample_frame = cam.read() # Introduce mark_detector to detect landmarks. mark_detector = MarkDetector() # Setup process and queues for multiprocessing. img_queue = Queue() box_queue = Queue() img_queue.put(sample_frame) if isWindows(): thread = threading.Thread(target=get_face, args=(mark_detector, confidence_threshold, img_queue, box_queue)) thread.daemon = True thread.start() else: box_process = Process(target=get_face, args=(mark_detector, confidence_threshold, img_queue, box_queue)) box_process.start() # Introduce pose estimator to solve pose. Get one frame to setup the # estimator according to the image size. height, width = sample_frame.shape[:2] pose_estimator = PoseEstimator(img_size=(height, width)) # Introduce scalar stabilizers for pose. pose_stabilizers = [Stabilizer( state_num=2, measure_num=1, cov_process=0.1, cov_measure=0.1) for _ in range(6)] while True: # Read frame, crop it, flip it, suits your needs. frame_got, frame = cam.read() if frame_got is False: break # Crop it if frame is larger than expected. # frame = frame[0:480, 300:940] # If frame comes from webcam, flip it so it looks like a mirror. if video_src == 0: frame = cv2.flip(frame, 2) # Pose estimation by 3 steps: # 1. detect face; # 2. detect landmarks; # 3. estimate pose # Feed frame to image queue. img_queue.put(frame) # Get face from box queue. result = box_queue.get() if result is not None: if args["draw_confidence"]: mark_detector.face_detector.draw_result(frame, result) # unpack result facebox, confidence = result # fix facebox if needed if facebox[1] > facebox[3]: facebox[1] = 0 if facebox[0] > facebox[2]: facebox[0] = 0 # Detect landmarks from image of 128x128. face_img = frame[facebox[1]: facebox[3], facebox[0]: facebox[2]] face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE)) face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB) marks = mark_detector.detect_marks(face_img) # Convert the marks locations from local CNN to global image. marks *= (facebox[2] - facebox[0]) marks[:, 0] += facebox[0] marks[:, 1] += facebox[1] # segment the image based on markers and facebox seg = Segmenter(facebox, marks, frame.shape[1], frame.shape[0]) if args["draw_segmented"]: mark_detector.draw_box(frame, seg.getSegmentBBs()) cv2.imshow("fg", seg.getSegmentJSON()["faceGrid"]) if args["draw_markers"]: mark_detector.draw_marks( frame, marks, color=(0, 255, 0)) # Try pose estimation with 68 points. pose = pose_estimator.solve_pose_by_68_points(marks) # Stabilize the pose. stable_pose = [] pose_np = np.array(pose).flatten() for value, ps_stb in zip(pose_np, pose_stabilizers): ps_stb.update([value]) stable_pose.append(ps_stb.state[0]) stable_pose = np.reshape(stable_pose, (-1, 3)) if args["draw_unstable"]: pose_estimator.draw_annotation_box( frame, pose[0], pose[1], color=(255, 128, 128)) if args["draw_pose"]: pose_estimator.draw_annotation_box( frame, stable_pose[0], stable_pose[1], color=(128, 255, 128)) # Show preview. cv2.imshow("Preview", frame) if cv2.waitKey(10) == 27: break # Clean up the multiprocessing process. if not isWindows(): box_process.terminate() box_process.join()