Exemple #1
0
def init_assignment(formation_setted):
    global marker_1
    global marker_2
    global marker_3
    global marker_4
    marker_1=Marker(1,position_3D=(formation_setted[0][0],formation_setted[0][1],0))
    marker_2=Marker(2,position_3D=(formation_setted[1][0],formation_setted[1][1],0))
    marker_3=Marker(3,position_3D=(formation_setted[2][0],formation_setted[2][1],0))
    marker_4=Marker(4,position_3D=(formation_setted[3][0],formation_setted[3][1],0))
    markers=[marker_1,marker_2,marker_3,marker_4]
    hung_index=assignment_change(formation_setted)
    ms_pos=MarkersPosition()
    ms_pos.markers_pos=markers
    ms_pos.hungarian_index=hung_index
def test():
    f1=MarkersPosition()
    
    marker1=Marker(1,position_3D=(1,2,3))
    
    marker2=Marker(2,position_3D=(4,5,6))
#    marker6=Marker(5,position_3D=(1,3,6))
    marker3=Marker(3,position_3D=(1,2,3))
    marker4=Marker(4,position_3D=(4,5,6))
    marker5=Marker(5,position_3D=(4,5,6))
    marker6=Marker(5,position_3D=(4,5,6))

    
    markers=[marker1,marker2,marker3,marker4,marker5,marker6]
    f1.markers_pos=markers
    f1.hungarian_index=[1,2,3,4]
    
    
    
    print(f1._marker1_pos)
    print(f1._marker2_pos)
    print(f1.markers_pos_string)
    f2=MarkersPosition()
    marker_append=Marker(5)
    f2.markers_pos=[marker_append]
    print(f1.hungarian_index_string)
    print("f1.hungarian_index_string",f1.hungarian_index_string)
def generate_marker_5_pos(markers):
    gen_markers = []
    for marker in markers:
        if marker.id != 5:
            gen_markers.append(marker)
            continue
        marker_position = marker.position
        pos_1 = (marker_position[0], marker_position[1], marker_position[2])
        new_marker_1 = Marker(id=5, contours=marker.contour, position_3D=pos_1)
        gen_markers.append(new_marker_1)
        break
    return gen_markers
def test_assignment():
    global marker_1
    global marker_2
    global marker_3
    global marker_4

    marker1 = Marker(1, position_3D=(-505.41, 301.34, 2604.7))
    marker2 = Marker(2, position_3D=(638.98, 349.74, 2649.97))
    marker3 = Marker(3, position_3D=(604.34, -611.95, 2619.11))
    marker4 = Marker(4, position_3D=(189.05, -202.78, 2596.1))
    #    marker5=Marker(5,position_3D=(0,5,0))
    markers = [marker1, marker2, marker3, marker4]

    for marker in markers:
        if marker.id == 1:
            marker_1 = marker
        elif marker.id == 2:
            marker_2 = marker
        elif marker.id == 3:
            marker_3 = marker
        elif marker.id == 4:
            marker_4 = marker
    markers_after = assignment_change(formation_H)
    print("index:", markers_after)
def for_adjust():
    f2 = MarkersPosition()
    marker1 = Marker(1, position_3D=(400, 2, 400))
    marker2 = Marker(2, position_3D=(800, 5, 700))
    marker3 = Marker(3, position_3D=(1200, 2, 400))
    marker4 = Marker(4, position_3D=(1600, 5, 700))
    marker5 = Marker(5, position_3D=(0, 5, 0))
    marker6 = Marker(5, position_3D=(3000, 3, 0))

    markers = [marker1, marker2, marker3, marker4, marker5, marker6]
    f2.markers_pos = markers
Exemple #6
0
def test():
    f2 = MarkersPosition()
    marker1 = Marker(1, position_3D=(400, 2, 400))
    marker2 = Marker(2, position_3D=(800, 5, 700))
    marker3 = Marker(3, position_3D=(1200, 2, 400))
    marker4 = Marker(4, position_3D=(1600, 5, 700))
    marker5 = Marker(5, position_3D=(0, 5, 0))
    marker6 = Marker(5, position_3D=(3000, 3, 0))
    #    marker7=Marker(5,position_3D=(2,5,7))
    #    marker8=Marker(5,position_3D=(1,3,6))

    markers = [marker1, marker2, marker3, marker4, marker5, marker6]
    f2.markers_pos = markers
    #    f2.hungarian_index=[1,2,3,0]

    print("starting")
    test_case = UDP_Server()  #('192.168.1.103',5000)
    test_case.start_server()
    print("ending")
    while True:
        #        print("hello")
        a = 1 + 2
        continue
from marker_detection.udp_server import UDP_Server
from marker_detection.marker import Marker
from sklearn.externals import joblib
import time
import math
import numpy as np
from marker_detection.hungarian_assignment import TaskAssignment
from marker_detection.util import draw_line_two_points, calc_middle_two_points

Load_Autoencoder = False

formation_H = [[0, 0], [800, 0], [800, -800], [0, -800]]
formation_I = [[0, 400], [0, 0], [0, -400], [0, -800]]
formation_T = [[-400, 0], [0, 0], [0, 800], [400, 0]]

marker_1 = Marker(id=1)
marker_2 = Marker(id=2)
marker_3 = Marker(id=3)
marker_4 = Marker(id=4)
marker_5 = []


def test():
    frame = cv2.imread("./test_img/test_img_81.jpg")
    print(frame.shape)
    model = joblib.load("./marker_detection/neigh_model.m")
    markers = detect_markers(frame, model)
    #    markers=simple_seprate_contour(markers)
    #    print("markers:",markers)
    for marker in markers:
        try:
Exemple #8
0
def simple_seprate_contour(markers):
    def calc_distance(point1, point2):
        return math.sqrt((point1[0] - point2[0])**2 +
                         (point1[1] - point2[1])**2)

    def clac_area_triangle(point1, point2, point3):
        a = calc_distance(point1, point2)
        b = calc_distance(point2, point3)
        c = calc_distance(point3, point1)
        p = (a + b + c) / 2
        #        print("a:",a,"b:",b,"c:",c,"p:",p)
        return math.sqrt(abs(p * (p - a) * (p - b) * (p - c)))

    def calc_area_square(contour, point):
        area_1 = clac_area_triangle(point, contour[0], contour[1])
        area_2 = clac_area_triangle(contour[1], point, contour[2])
        area_3 = clac_area_triangle(contour[3], contour[2], point)
        area_4 = clac_area_triangle(contour[0], contour[3], point)
        return (area_1 + area_2 + area_3 + area_4)

    def point_in_contour(point, contour):
        #        print("contour:",contour)
        #        input()
        contour_center = np.mean(contour, axis=0)
        contour_area = calc_area_square(contour, contour_center)
        point_to_contour_area = calc_area_square(contour, point)
        epsilon = 0.1
        if point_to_contour_area > contour_area + epsilon:
            return False
        else:
            return True

    markers_info = []  #tuple包含了四个组成部分:(id,center,contour,area)
    #    print("markers:",markers)
    #    input()
    for marker in markers:
        #        print("marker__:",marker.contour)
        if (marker.center == None):
            continue
        cur_contour = []
        cur_contour.append(marker.contour[0][0])
        cur_contour.append(marker.contour[1][0])
        cur_contour.append(marker.contour[2][0])
        cur_contour.append(marker.contour[3][0])
        marker_info = (marker.id, marker.center, cur_contour,
                       calc_area_square(cur_contour, marker.center))
        markers_info.append(marker_info)
    sorted(markers_info, key=lambda x: (x[3]), reverse=True)
    marker_list = []
    for index, marker_info in enumerate(markers_info):
        if index + 1 < len(markers_info):
            marker_need_remove = False
            for i in range(index + 1, len(markers_info)):
                if point_in_contour(marker_info[1], markers_info[i][2]):
                    marker_need_remove = True
                    break
            if marker_need_remove == False:
                marker_list.append(
                    Marker(id=marker_info[0],
                           contours=np.array(marker_info[2])))
        else:
            marker_list.append(
                Marker(id=marker_info[0], contours=np.array(marker_info[2])))
    return marker_list
Exemple #9
0
def detect_markers(img, model, edge_length=120, Load_Autoencoder=False):
    def validate_digit_marker(detector, marker):
        rows, cols = marker.shape
        res_4 = []
        #        cv2.imshow("frame_marker:",marker)
        #        print("marker",marker)
        #        cv2.waitKey(0)
        #        _label=input()
        #        cv2.imwrite("./img_dataset/new_img_dataset"+str(random.randint(1,3000))+"_"+str(_label)+".png",marker)
        #        cv2.destroyAllWindows()

        for i in range(4):
            M = cv2.getRotationMatrix2D(
                (int(MARKER_SIZE / 2), int(MARKER_SIZE / 2)), 90 * i, 1)
            rotated_img = cv2.warpAffine(marker, M, (0, 0))
            #            cv2.imshow("frame:",rotated_img)
            #            cv2.waitKey(0)
            rotated_img_reshaped = rotated_img.reshape(
                -1, MARKER_SIZE * MARKER_SIZE)
            if Load_Autoencoder:
                rotated_img_reshaped = eval_model(rotated_img_reshaped)
            pred_res = detector.predict(rotated_img_reshaped)[0]
            res_4.append(pred_res)
        res_4.append(res_4[0])
        #        print("res_4:",res_4)
        counts = np.bincount(res_4)
        res = int(np.argmax(counts))
        #返回众数
        return res

    width, height, _ = img.shape
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    #    cv2.namedWindow('image', cv2.WINDOW_NORMAL)
    #    cv2.imshow('image',gray)
    #    cv2.waitKey(0)
    #    cv2.destroyAllWindows()

    #    gray = cv2.medianBlur(gray,3)

    # Otsu's thresholding
    ret2, gray_edge = cv2.threshold(gray.copy(), 175, 255,
                                    cv2.THRESH_BINARY)  #+cv2.THRESH_OTSU
    #    gray_close = cv2.medianBlur(gray_edge,5)
    #    cv2.namedWindow('image_close', cv2.WINDOW_NORMAL)
    #    cv2.imshow("image_close", gray_edge)
    #    cv2.waitKey(0)
    #

    #    gray = cv2.equalizeHist(gray)

    edges = cv2.Canny(gray_edge, 20, 200)

    #    _img_cont, cont, hier = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    #    _img = cv2.drawContours(gray, cont, -1, 0, 3)

    #    cv2.namedWindow('image', cv2.WINDOW_NORMAL)
    #    cv2.imshow('image',_img)
    #    cv2.waitKey(0)
    #    cv2.destroyAllWindows()
    #
    contours, hierarchy = cv2.findContours(edges.copy(), cv2.RETR_TREE,
                                           cv2.CHAIN_APPROX_NONE)[-2:]

    # We only keep the long enough contours
    min_contour_length = min(width, height) / 80
    contours = [
        contour for contour in contours if len(contour) > min_contour_length
    ]
    warped_size = 49
    canonical_marker_coords = array(
        ((0, 0), (warped_size - 1, 0), (warped_size - 1, warped_size - 1),
         (0, warped_size - 1)),
        dtype='float32')
    #    print("canonical_marker_coords:",canonical_marker_coords)

    markers_list = []
    #    print("len(contours):",len(contours))
    for contour in contours:
        approx_curve = cv2.approxPolyDP(contour, len(contour) * 0.01, True)
        if not (cv2.isContourConvex(approx_curve) and len(approx_curve) == 4):
            continue

        sorted_curve = array(cv2.convexHull(approx_curve, clockwise=False),
                             dtype='float32')
        #        print("sorted_curve:",sorted_curve)
        persp_transf = cv2.getPerspectiveTransform(sorted_curve,
                                                   canonical_marker_coords)
        warped_img = cv2.warpPerspective(gray_edge, persp_transf,
                                         (warped_size, warped_size))
        #        warped_gray = cv2.cvtColor(warped_img, cv2.COLOR_BGR2GRAY)
        warped_gray = 255 - warped_img

        #        _, warped_bin = cv2.threshold(warped_gray, 210, 255, cv2.THRESH_BINARY)
        #        cv2.imshow('image_gry',warped_bin)
        #        cv2.waitKey(0)
        #        print("shape:",warped_bin.shape)
        warped_bin = cv2.resize(warped_gray, (MARKER_SIZE, MARKER_SIZE))

        #        cv2.imshow('image_gry',warped_bin)
        #        cv2.waitKey(0)

        ret2, wraped_bin = cv2.threshold(warped_bin.copy(), 190, 255,
                                         cv2.THRESH_BINARY)  #
        marker = warped_bin.reshape([
            MARKER_SIZE,
            int(warped_size / MARKER_SIZE), MARKER_SIZE,
            int(warped_size / MARKER_SIZE)
        ])

        #        cv2.imshow('image_gry',warped_bin)
        #        cv2.waitKey(0)
        #        print("marker:",marker.shape)
        marker = marker.mean(axis=3).mean(axis=1)
        marker = marker / 255.0
        marker[marker < 0.3] = 0
        marker[marker >= 0.3] = 1
        try:
            #            print("############ validating ##################")
            marker_id = validate_digit_marker(model, marker)
            _marker = Marker(id=marker_id, contours=approx_curve)
            #            print("_marker:",_marker)
            if marker_id == 0:
                continue
            markers_list.append(_marker)
#            print(mar)
        except ValueError:
            continue
    markers_list = simple_seprate_contour(markers_list)
    for marker in markers_list:
        position_3D = calc_distance_to_marker(marker, edge_length)
        marker.position = position_3D
    return markers_list