def __init__(self,
                 agent_name,
                 s3_dict_metrics,
                 is_continuous,
                 pause_time_before_start=0.0):
        """Init eval metrics

        Args:
            agent_name (string): agent name
            s3_dict_metrics (dict): Dictionary containing the required
                s3 info for the metrics bucket with keys specified by MetricsS3Keys
            is_continuous (bool): True if continuous race, False otherwise
            pause_time_before_start (float): second to pause before race start
        """
        self._pause_time_before_start = pause_time_before_start
        self._is_pause_time_subtracted = False
        self._agent_name_ = agent_name
        self._s3_metrics = Metrics(
            bucket=s3_dict_metrics[MetricsS3Keys.METRICS_BUCKET.value],
            s3_key=s3_dict_metrics[MetricsS3Keys.METRICS_KEY.value],
            region_name=s3_dict_metrics[MetricsS3Keys.REGION.value],
        )
        self._is_continuous = is_continuous
        self._start_time_ = time.time()
        self._number_of_trials_ = 0
        self._progress_ = 0.0
        self._episode_status = ""
        self._metrics_ = list()
        # This is used to calculate the actual distance traveled by the car
        self._agent_xy = list()
        self._prev_step_time = time.time()
        self.is_save_simtrace_enabled = rospy.get_param(
            "SIMTRACE_S3_BUCKET", None)
        # Create the agent specific directories needed for storing the metric files
        self._simtrace_local_path = SIMTRACE_EVAL_LOCAL_PATH_FORMAT.format(
            self._agent_name_)
        simtrace_dirname = os.path.dirname(self._simtrace_local_path)
        if simtrace_dirname or not os.path.exists(simtrace_dirname):
            os.makedirs(simtrace_dirname)
        self.reset_count_dict = {
            EpisodeStatus.CRASHED.value: 0,
            EpisodeStatus.OFF_TRACK.value: 0,
            EpisodeStatus.IMMOBILIZED.value: 0,
            EpisodeStatus.REVERSED.value: 0,
        }
        self._best_lap_time = float("inf")
        self._total_evaluation_time = 0
        self._video_metrics = Mp4VideoMetrics.get_empty_dict()
        self._reset_count_sum = 0
        self._current_sim_time = 0
        self.track_data = TrackData.get_instance()
        rospy.Service(
            "/{}/{}".format(self._agent_name_, "mp4_video_metrics"),
            VideoMetricsSrv,
            self._handle_get_video_metrics,
        )
        AbstractTracker.__init__(self, TrackerPriority.HIGH)
Exemple #2
0
 def __init__(self,
              agent_name,
              s3_dict_metrics,
              deepracer_checkpoint_json,
              ckpnt_dir,
              run_phase_sink,
              use_model_picker=True):
     '''s3_dict_metrics - Dictionary containing the required s3 info for the metrics
                          bucket with keys specified by MetricsS3Keys
        deepracer_checkpoint_json - DeepracerCheckpointJson instance
        ckpnt_dir - Directory where the current checkpont is to be stored
        run_phase_sink - Sink to recieve notification of a change in run phase
        use_model_picker - Flag to whether to use model picker or not.
     '''
     self._agent_name_ = agent_name
     self._deepracer_checkpoint_json = deepracer_checkpoint_json
     self._s3_metrics = Metrics(
         bucket=s3_dict_metrics[MetricsS3Keys.METRICS_BUCKET.value],
         s3_key=s3_dict_metrics[MetricsS3Keys.METRICS_KEY.value],
         region_name=s3_dict_metrics[MetricsS3Keys.REGION.value])
     self._start_time_ = time.time()
     self._episode_ = 0
     self._episode_reward_ = 0.0
     self._progress_ = 0.0
     self._episode_status = ''
     self._metrics_ = list()
     self._is_eval_ = True
     self._eval_trials_ = 0
     self._checkpoint_state_ = CheckpointStateFile(ckpnt_dir)
     self._use_model_picker = use_model_picker
     self._eval_stats_dict_ = {'chkpnt_name': None, 'avg_eval_metric': None}
     self._best_chkpnt_stats = {
         'name': None,
         'avg_eval_metric': None,
         'time_stamp': time.time()
     }
     self._current_eval_best_model_metric_list_ = list()
     self.is_save_simtrace_enabled = rospy.get_param(
         'SIMTRACE_S3_BUCKET', None)
     self._best_model_metric_type = BestModelMetricType(
         rospy.get_param('BEST_MODEL_METRIC',
                         BestModelMetricType.PROGRESS.value).lower())
     self.track_data = TrackData.get_instance()
     run_phase_sink.register(self)
     # Create the agent specific directories needed for storing the metric files
     self._simtrace_local_path = SIMTRACE_TRAINING_LOCAL_PATH_FORMAT.format(
         self._agent_name_)
     simtrace_dirname = os.path.dirname(self._simtrace_local_path)
     if simtrace_dirname or not os.path.exists(simtrace_dirname):
         os.makedirs(simtrace_dirname)
     self._current_sim_time = 0
     rospy.Service("/{}/{}".format(self._agent_name_, "mp4_video_metrics"),
                   VideoMetricsSrv, self._handle_get_video_metrics)
     self._video_metrics = Mp4VideoMetrics.get_empty_dict()
     AbstractTracker.__init__(self, TrackerPriority.HIGH)
Exemple #3
0
    def __init__(self, agent_name, s3_dict_metrics, is_continuous):
        '''Init eval metrics

        Args:
            agent_name (string): agent name
            s3_dict_metrics (dict): Dictionary containing the required
                s3 info for the metrics bucket with keys specified by MetricsS3Keys
            is_continuous (bool): True if continuous race, False otherwise
        '''
        self._agent_name_ = agent_name
        self._s3_dict_metrics_ = s3_dict_metrics
        self._is_continuous = is_continuous
        self._start_time_ = time.time()
        self._number_of_trials_ = 0
        self._progress_ = 0.0
        self._episode_status = ''
        self._metrics_ = list()
        # This is used to calculate the actual distance traveled by the car
        self._agent_xy = list()
        self._prev_step_time = None
        self.is_save_simtrace_enabled = rospy.get_param(
            'SIMTRACE_S3_BUCKET', None)
        # Create the agent specific directories needed for storing the metric files
        simtrace_dirname = os.path.dirname(
            IterationDataLocalFileNames.SIM_TRACE_EVALUATION_LOCAL_FILE.value)
        if not os.path.exists(
                os.path.join(ITERATION_DATA_LOCAL_FILE_PATH, self._agent_name_,
                             simtrace_dirname)):
            os.makedirs(
                os.path.join(ITERATION_DATA_LOCAL_FILE_PATH, self._agent_name_,
                             simtrace_dirname))
        self.reset_count_dict = {
            EpisodeStatus.CRASHED.value: 0,
            EpisodeStatus.OFF_TRACK.value: 0,
            EpisodeStatus.IMMOBILIZED.value: 0,
            EpisodeStatus.REVERSED.value: 0
        }
        self._best_lap_time = float('inf')
        self._total_evaluation_time = 0
        self._video_metrics = Mp4VideoMetrics.get_empty_dict()
        self._reset_count_sum = 0
        rospy.Service("/{}/{}".format(self._agent_name_, "mp4_video_metrics"),
                      VideoMetricsSrv, self._handle_get_video_metrics)
 def clear(self):
     """clear all EvalMetrics member variable"""
     self._is_pause_time_subtracted = False
     self._start_time_ = self._current_sim_time
     self._number_of_trials_ = 0
     self._progress_ = 0.0
     self._episode_status = ""
     self._metrics_ = list()
     self._agent_xy = list()
     self._prev_step_time = self._current_sim_time
     self.reset_count_dict = {
         EpisodeStatus.CRASHED.value: 0,
         EpisodeStatus.OFF_TRACK.value: 0,
         EpisodeStatus.IMMOBILIZED.value: 0,
         EpisodeStatus.REVERSED.value: 0,
     }
     self._best_lap_time = float("inf")
     self._total_evaluation_time = 0
     self._video_metrics = Mp4VideoMetrics.get_empty_dict()
     self._reset_count_sum = 0
     self._current_sim_time = 0
Exemple #5
0
 def __init__(self, agent_name, s3_dict_metrics):
     '''s3_dict_metrics - Dictionary containing the required s3 info for the metrics
                          bucket with keys specified by MetricsS3Keys
     '''
     self._agent_name_ = agent_name
     self._s3_dict_metrics_ = s3_dict_metrics
     self._start_time_ = time.time()
     self._number_of_trials_ = 0
     self._progress_ = 0.0
     self._episode_status = ''
     self._metrics_ = list()
     # This is used to calculate the actual distance travelled by the car
     self._agent_xy = list()
     self._prev_step_time = None
     self._simtrace_data_ = \
         DeepRacerRacetrackSimTraceData(self._s3_dict_metrics_[MetricsS3Keys.STEP_BUCKET.value],
                                        self._s3_dict_metrics_[MetricsS3Keys.STEP_KEY.value],
                                        self._s3_dict_metrics_[MetricsS3Keys.ENDPOINT_URL.value])
     # Create the agent specific directories needed for storing the metric files
     simtrace_dirname = os.path.dirname(
         IterationDataLocalFileNames.SIM_TRACE_EVALUATION_LOCAL_FILE.value)
     if not os.path.exists(
             os.path.join(ITERATION_DATA_LOCAL_FILE_PATH, self._agent_name_,
                          simtrace_dirname)):
         os.makedirs(
             os.path.join(ITERATION_DATA_LOCAL_FILE_PATH, self._agent_name_,
                          simtrace_dirname))
     self.reset_count_dict = {
         EpisodeStatus.CRASHED.value: 0,
         EpisodeStatus.OFF_TRACK.value: 0,
         EpisodeStatus.IMMOBILIZED.value: 0,
         EpisodeStatus.REVERSED.value: 0
     }
     self._best_lap_time = float('inf')
     self._total_evaluation_time = 0
     self._video_metrics = Mp4VideoMetrics.get_empty_dict()
     rospy.Service("/{}/{}".format(self._agent_name_, "mp4_video_metrics"),
                   VideoMetricsSrv, self._handle_get_video_metrics)
Exemple #6
0
 def __init__(self, agent_name, s3_dict_metrics, s3_dict_model, ckpnt_dir, run_phase_sink, use_model_picker=True):
     '''s3_dict_metrics - Dictionary containing the required s3 info for the metrics
                          bucket with keys specified by MetricsS3Keys
        s3_dict_model - Dictionary containing the required s3 info for the model
                        bucket, which is where the best model info will be saved with
                        keys specified by MetricsS3Keys
        ckpnt_dir - Directory where the current checkpont is to be stored
        run_phase_sink - Sink to recieve notification of a change in run phase
        use_model_picker - Flag to whether to use model picker or not.
     '''
     self._agent_name_ = agent_name
     self._s3_dict_metrics_ = s3_dict_metrics
     self._s3_dict_model_ = s3_dict_model
     self._start_time_ = time.time()
     self._episode_ = 0
     self._episode_reward_ = 0.0
     self._progress_ = 0.0
     self._episode_status = ''
     self._metrics_ = list()
     self._is_eval_ = True
     self._eval_trials_ = 0
     self._checkpoint_state_ = CheckpointStateFile(ckpnt_dir)
     self._use_model_picker = use_model_picker
     self._eval_stats_dict_ = {'chkpnt_name': None, 'avg_comp_pct': -1.0}
     self._best_chkpnt_stats = {'name': None, 'avg_comp_pct': -1.0, 'time_stamp': time.time()}
     self._current_eval_pct_list_ = list()
     self.is_save_simtrace_enabled = rospy.get_param('SIMTRACE_S3_BUCKET', None)
     self.track_data = TrackData.get_instance()
     run_phase_sink.register(self)
     # Create the agent specific directories needed for storing the metric files
     simtrace_dirname = os.path.dirname(IterationDataLocalFileNames.SIM_TRACE_TRAINING_LOCAL_FILE.value)
     if not os.path.exists(os.path.join(ITERATION_DATA_LOCAL_FILE_PATH, self._agent_name_, simtrace_dirname)):
         os.makedirs(os.path.join(ITERATION_DATA_LOCAL_FILE_PATH, self._agent_name_, simtrace_dirname))
     self._current_sim_time = 0
     rospy.Service("/{}/{}".format(self._agent_name_, "mp4_video_metrics"), VideoMetricsSrv,
                   self._handle_get_video_metrics)
     self._video_metrics = Mp4VideoMetrics.get_empty_dict()
     AbstractTracker.__init__(self, TrackerPriority.HIGH)
 def __init__(self,
              agent_name,
              s3_dict_metrics,
              deepracer_checkpoint_json,
              ckpnt_dir,
              run_phase_sink,
              use_model_picker=True):
     '''s3_dict_metrics - Dictionary containing the required s3 info for the metrics
                          bucket with keys specified by MetricsS3Keys
        deepracer_checkpoint_json - DeepracerCheckpointJson instance
        ckpnt_dir - Directory where the current checkpont is to be stored
        run_phase_sink - Sink to recieve notification of a change in run phase
        use_model_picker - Flag to whether to use model picker or not.
     '''
     self._agent_name_ = agent_name
     self._deepracer_checkpoint_json = deepracer_checkpoint_json
     self._s3_metrics = Metrics(
         bucket=s3_dict_metrics[MetricsS3Keys.METRICS_BUCKET.value],
         s3_key=s3_dict_metrics[MetricsS3Keys.METRICS_KEY.value],
         region_name=s3_dict_metrics[MetricsS3Keys.REGION.value],
         s3_endpoint_url=s3_dict_metrics[MetricsS3Keys.ENDPOINT_URL.value])
     self._start_time_ = time.time()
     self._episode_ = 0
     self._episode_reward_ = 0.0
     self._progress_ = 0.0
     self._episode_status = ''
     self._metrics_ = list()
     self._is_eval_ = True
     self._eval_trials_ = 0
     self._checkpoint_state_ = CheckpointStateFile(ckpnt_dir)
     self._use_model_picker = use_model_picker
     self._eval_stats_dict_ = {'chkpnt_name': None, 'avg_eval_metric': None}
     self._best_chkpnt_stats = {
         'name': None,
         'avg_eval_metric': None,
         'time_stamp': time.time()
     }
     self._current_eval_best_model_metric_list_ = list()
     self.is_save_simtrace_enabled = rospy.get_param(
         'SIMTRACE_S3_BUCKET', None)
     self._best_model_metric_type = BestModelMetricType(
         rospy.get_param('BEST_MODEL_METRIC',
                         BestModelMetricType.PROGRESS.value).lower())
     self.track_data = TrackData.get_instance()
     run_phase_sink.register(self)
     # Create the agent specific directories needed for storing the metric files
     self._simtrace_local_path = SIMTRACE_TRAINING_LOCAL_PATH_FORMAT.format(
         self._agent_name_)
     simtrace_dirname = os.path.dirname(self._simtrace_local_path)
     # addressing mkdir and check directory race condition:
     # https://stackoverflow.com/questions/12468022/python-fileexists-error-when-making-directory/30174982#30174982
     # TODO: change this to os.makedirs(simtrace_dirname, exist_ok=True) when we migrate off python 2.7
     try:
         os.makedirs(simtrace_dirname)
     except OSError as e:
         if e.errno != errno.EEXIST:
             raise
         LOGGER.error("File already exist %s", simtrace_dirname)
     self._current_sim_time = 0
     rospy.Service("/{}/{}".format(self._agent_name_, "mp4_video_metrics"),
                   VideoMetricsSrv, self._handle_get_video_metrics)
     self._video_metrics = Mp4VideoMetrics.get_empty_dict()
     AbstractTracker.__init__(self, TrackerPriority.HIGH)
    def __init__(self,
                 agent_name,
                 s3_dict_metrics,
                 is_continuous,
                 pause_time_before_start=0.0):
        '''Init eval metrics

        Args:
            agent_name (string): agent name
            s3_dict_metrics (dict): Dictionary containing the required
                s3 info for the metrics bucket with keys specified by MetricsS3Keys
            is_continuous (bool): True if continuous race, False otherwise
            pause_time_before_start (float): second to pause before race start
        '''
        self._pause_time_before_start = pause_time_before_start
        self._is_pause_time_subtracted = False
        self._agent_name_ = agent_name
        self._s3_metrics = Metrics(
            bucket=s3_dict_metrics[MetricsS3Keys.METRICS_BUCKET.value],
            s3_key=s3_dict_metrics[MetricsS3Keys.METRICS_KEY.value],
            region_name=s3_dict_metrics[MetricsS3Keys.REGION.value],
            s3_endpoint_url=s3_dict_metrics[MetricsS3Keys.ENDPOINT_URL.value])
        self._is_continuous = is_continuous
        self._start_time_ = time.time()
        self._number_of_trials_ = 0
        self._progress_ = 0.0
        self._episode_status = ''
        self._metrics_ = list()
        # This is used to calculate the actual distance traveled by the car
        self._agent_xy = list()
        self._prev_step_time = time.time()
        self.is_save_simtrace_enabled = rospy.get_param(
            'SIMTRACE_S3_BUCKET', None)
        # Create the agent specific directories needed for storing the metric files
        self._simtrace_local_path = SIMTRACE_EVAL_LOCAL_PATH_FORMAT.format(
            self._agent_name_)
        simtrace_dirname = os.path.dirname(self._simtrace_local_path)
        # addressing mkdir and check directory race condition:
        # https://stackoverflow.com/questions/12468022/python-fileexists-error-when-making-directory/30174982#30174982
        # TODO: change this to os.makedirs(simtrace_dirname, exist_ok=True) when we migrate off python 2.7
        try:
            os.makedirs(simtrace_dirname)
        except OSError as e:
            if e.errno != errno.EEXIST:
                raise
            LOGGER.error("File already exist %s", simtrace_dirname)

        self.reset_count_dict = {
            EpisodeStatus.CRASHED.value: 0,
            EpisodeStatus.OFF_TRACK.value: 0,
            EpisodeStatus.IMMOBILIZED.value: 0,
            EpisodeStatus.REVERSED.value: 0
        }
        self._best_lap_time = float('inf')
        self._total_evaluation_time = 0
        self._video_metrics = Mp4VideoMetrics.get_empty_dict()
        self._reset_count_sum = 0
        self._current_sim_time = 0
        self.track_data = TrackData.get_instance()
        rospy.Service("/{}/{}".format(self._agent_name_, "mp4_video_metrics"),
                      VideoMetricsSrv, self._handle_get_video_metrics)
        AbstractTracker.__init__(self, TrackerPriority.HIGH)