def testWithPlainValue(self): if self.func_name in ['__and__', '__or__', '__xor__']: # skip tests for bitwise logical operators on plain value. return data1 = pd.DataFrame(np.random.rand(10, 10), index=np.arange(10), columns=[4, 1, 3, 2, 10, 5, 9, 8, 6, 7]) data1 = self.to_boolean_if_needed(data1) df1 = from_pandas(data1, chunk_size=6) s1 = df1[2] r = getattr(df1, self.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], axis=0) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1, self.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(df1, self.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10), axis=0) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1, self.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10), axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(s1, self.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1[2], self.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) pd.testing.assert_series_equal(expected, result) r = getattr(s1, self.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1[2], self.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) pd.testing.assert_series_equal(expected, result) # specify index, not the default range index data1 = pd.DataFrame(np.random.rand(10, 7), index=np.arange(5, 15), columns=[4, 1, 3, 2, 5, 6, 7]) data1 = self.to_boolean_if_needed(data1) df1 = from_pandas(data1, chunk_size=6) s1 = df1[2] r = getattr(df1, self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), axis=0) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1, self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(df1, self.func_name)(from_array(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])), axis=0) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1, self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(s1, self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1[2], self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) pd.testing.assert_series_equal(expected, result) r = getattr(s1, self.func_name)(from_array(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1[2], self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) pd.testing.assert_series_equal(expected, result)
def test_with_plain_value(setup, func_name, func_opts): if func_opts.func_name in ['__and__', '__or__', '__xor__']: # skip tests for bitwise logical operators on plain value. return data1 = pd.DataFrame(np.random.rand(10, 10), index=np.arange(10), columns=[4, 1, 3, 2, 10, 5, 9, 8, 6, 7]) data1 = to_boolean_if_needed(func_opts.func_name, data1) df1 = from_pandas(data1, chunk_size=6) s1 = df1[2] r = getattr(df1, func_opts.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], axis=0) result = r.execute().fetch() expected = getattr(data1, func_opts.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(df1, func_opts.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10), axis=0) result = r.execute().fetch() expected = getattr(data1, func_opts.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10), axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(s1, func_opts.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) result = r.execute().fetch() expected = getattr(data1[2], func_opts.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) pd.testing.assert_series_equal(expected, result) r = getattr(s1, func_opts.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) result = r.execute().fetch() expected = getattr(data1[2], func_opts.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) pd.testing.assert_series_equal(expected, result) # specify index, not the default range index data1 = pd.DataFrame(np.random.rand(10, 7), index=np.arange(5, 15), columns=[4, 1, 3, 2, 5, 6, 7]) data1 = to_boolean_if_needed(func_opts.func_name, data1) df1 = from_pandas(data1, chunk_size=6) s1 = df1[2] r = getattr(df1, func_opts.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), axis=0) result = r.execute().fetch() expected = getattr(data1, func_opts.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(df1, func_opts.func_name)(from_array(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])), axis=0) result = r.execute().fetch() expected = getattr(data1, func_opts.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(s1, func_opts.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) result = r.execute().fetch() expected = getattr(data1[2], func_opts.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) pd.testing.assert_series_equal(expected, result) r = getattr(s1, func_opts.func_name)(from_array(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))) result = r.execute().fetch() expected = getattr(data1[2], func_opts.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) pd.testing.assert_series_equal(expected, result)
def testWithPlainValue(self): data1 = pd.DataFrame(np.random.rand(10, 10), index=np.arange(10), columns=[4, 1, 3, 2, 10, 5, 9, 8, 6, 7]) df1 = from_pandas(data1, chunk_size=6) s1 = df1[2] r = getattr(df1, self.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], axis=0) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1, self.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(df1, self.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10), axis=0) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1, self.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10), axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(s1, self.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1[2], self.func_name)([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) pd.testing.assert_series_equal(expected, result) r = getattr(s1, self.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1[2], self.func_name)((1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) pd.testing.assert_series_equal(expected, result) # specify index, not the default range index data1 = pd.DataFrame(np.random.rand(10, 7), index=np.arange(5, 15), columns=[4, 1, 3, 2, 5, 6, 7]) df1 = from_pandas(data1, chunk_size=6) s1 = df1[2] r = getattr(df1, self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), axis=0) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1, self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(df1, self.func_name)(from_array(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])), axis=0) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1, self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), axis=0) pd.testing.assert_frame_equal(expected, result) r = getattr(s1, self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1[2], self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) pd.testing.assert_series_equal(expected, result) r = getattr(s1, self.func_name)(from_array(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))) result = self.executor.execute_dataframe(r, concat=True)[0] expected = getattr(data1[2], self.func_name)(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) pd.testing.assert_series_equal(expected, result)