Exemple #1
0
def main(args, outs):
    martian.log_info(u'Logging à non-ascii character from unicode string.')
    martian.log_info(u'Logging à non-ascii character from python string.'.encode('utf-8'))
    martian.log_info({'hello': 'world'})
    martian.update_progress(u'%s = %f' % (
        u'+'.join([u'%f\u00b2' % v for v in args.values]),
        args.sum))
Exemple #2
0
def prepare_transcriptome_indexes(reference_path, vdj_reference_path):
    """ Use ReadStates of R1/R2 to determine SC3Pv1 vs SC3Pv2 vs SC5P-R1 vs SC5P_auto/SCVDJ.
        Returns (chemistry_name, report, metrics)
        where report is a text report and metrics is a dict """

    ## Index the reference fasta
    fa_path = os.path.join(reference_path, cr_constants.REFERENCE_FASTA_PATH)
    new_fa_path = martian.make_path('ref.fa')

    need_index = True

    if os.path.exists(fa_path + '.fai'):
        # Look for existing .fai file (won't exist for our standard ref packages)
        martian.update_progress('Found genome FASTA index....')
        new_fa_path = fa_path
        need_index = False

    else:
        # Note: this will fail if user's fs doesn't support symlinks
        martian.update_progress('Symlinking genome FASTA...')
        os.symlink(fa_path, new_fa_path)

    if need_index:
        martian.update_progress('Indexing genome...')
        run(['samtools', 'faidx', new_fa_path])

    ## Generate a transcriptome reference from a genome ref
    martian.update_progress('Building transcriptome...')
    gtf_path = os.path.join(reference_path,
                            cr_constants.REFERENCE_GENES_GTF_PATH)
    out_fa_path = martian.make_path('transcriptome.fa')
    # Only index the 1st encountered transcript per gene
    run([
        'detect_chemistry', 'get-transcripts', new_fa_path, gtf_path,
        out_fa_path
    ])

    ## Build kmer index
    martian.update_progress('Building kmer index...')
    kmer_idx_path = martian.make_path('kmers.idx')
    run(['detect_chemistry', 'index-transcripts', out_fa_path, kmer_idx_path])

    # Build VDJ kmer index (optional)
    vdj_idx_path = None
    if vdj_reference_path is not None:
        vdj_fa_path = vdj_ref.get_vdj_reference_fasta(vdj_reference_path)
        vdj_idx_path = martian.make_path('vdj_kmers.idx')
        run([
            'detect_chemistry', 'index-transcripts', vdj_fa_path, vdj_idx_path
        ])

    return (kmer_idx_path, vdj_idx_path)
Exemple #3
0
def infer_sc3p_or_sc5p(chunks, kmer_idx_path, vdj_idx_path):
    """ Use ReadStates of R1/R2 to determine SC3Pv1 vs SC3Pv2 vs SC5P-R1 vs SC5P_auto/SCVDJ.
        Returns (chemistry_name, report, metrics)
        where report is a text report and metrics is a dict """

    ## Map read kmers to each strand
    martian.update_progress('Mapping reads...')

    # Prepare fastq paths
    fq_specs = {}
    for read_type in READ_TYPES:
        fq_specs[read_type] = martian.make_path('%s_in.json' % read_type)
        with open(fq_specs[read_type], 'w') as f:
            json.dump([c for c in chunks if c['read_type'] == read_type], f)

    # Map reads to gene expression reference
    metrics = {}
    for read_type in READ_TYPES:
        map_out_path = martian.make_path('%s_out.json' % read_type)
        metrics[read_type] = map_reads(fq_specs[read_type], kmer_idx_path,
                                       map_out_path)

    # Map reads to VDJ reference (optional)
    if vdj_idx_path is not None:
        for read_type in READ_TYPES:
            map_out_path = martian.make_path('vdj_%s_out.json' % read_type)
            vdj_metrics = map_reads(fq_specs[read_type], vdj_idx_path,
                                    map_out_path)

            for k, v in vdj_metrics.iteritems():
                metrics[read_type]['vdj_' + k] = v

    # Verify total read counts
    r1_total = metrics['R1']['total_reads']
    r2_total = metrics['R2']['total_reads']
    if r1_total != 0 and r2_total != 0 and r1_total != r2_total:
        martian.exit(
            'Total read counts for R1 and R2 must be identical if both are present. There were %d R1 reads and %d R2 reads. Check that all of the FASTQ files are present.'
            % (r1_total, r2_total))

    ## Infer chemistry
    report = '\n'
    for read_type, m in metrics.iteritems():
        report += '%s Total Reads:     %s\n' % (read_type, str(
            m['total_reads']).rjust(20))
        report += '%s Sense Reads:     %s\n' % (read_type, str(
            m['sense_reads']).rjust(20))
        report += '%s Antisense Reads: %s\n' % (
            read_type, str(m['antisense_reads']).rjust(20))

    if vdj_idx_path is not None:
        for read_type, m in metrics.iteritems():
            report += '%s Sense V(D)J Reads:     %s\n' % (
                read_type, str(m['vdj_sense_reads']).rjust(20))
            report += '%s Antisense V(D)J Reads: %s\n' % (
                read_type, str(m['vdj_antisense_reads']).rjust(20))

    r1_state = getReadState(metrics['R1']['sense_reads'],
                            metrics['R1']['antisense_reads'],
                            metrics['R1']['mapped_reads'],
                            metrics['R1']['total_reads'])
    r2_state = getReadState(metrics['R2']['sense_reads'],
                            metrics['R2']['antisense_reads'],
                            metrics['R2']['mapped_reads'],
                            metrics['R2']['total_reads'])

    report += "\n"
    chemistry_name = None

    if (r1_state == ReadState.SENSE_MAPPED) and (r2_state
                                                 == ReadState.UNMAPPED):
        chemistry_name = 'SC3Pv1'
        report += "This library is likely to be a Single Cell 3' gene expression library (v1)."

    elif r2_state == ReadState.SENSE_MAPPED:
        chemistry_name = 'SC3Pv2'
        report += "This library is likely to be a Single Cell 3' gene expression library (v2)."

    elif (r1_state == ReadState.SENSE_MAPPED) and (r2_state
                                                   == ReadState.ABSENT):
        chemistry_name = 'SC5P-R1'
        report += "This library is likely to be a Single Cell 5' gene expression library (R1)."

    elif (r2_state == ReadState.ANTISENSE_MAPPED):
        r1_gex_sense_count = metrics['R1'].get('sense_reads', 0)
        r2_gex_anti_count = metrics['R2'].get('antisense_reads', 0)
        r1_vdj_sense_count = metrics['R1'].get('vdj_sense_reads', 0)
        r2_vdj_anti_count = metrics['R2'].get('vdj_antisense_reads', 0)
        if vdj_idx_path is None:
            report += "This library is likely to be a Single Cell V(D)J or Single Cell 5' gene expression library."
            chemistry_name = 'SC5P_auto'
        else:
            if (is_vdj(r1_gex_sense_count, r1_vdj_sense_count)
                    or is_vdj(r2_gex_anti_count, r2_vdj_anti_count)):
                report += "This library is likely to be a Single Cell V(D)J library."
                chemistry_name = 'SCVDJ'

            else:
                report += "This library is likely to be a Single Cell 5' gene expression library."
                chemistry_name = 'SC5P_auto'

    else:
        report += "There was not enough information to determine the nature of the library."
        chemistry_name = None

    return chemistry_name, report, metrics
Exemple #4
0
def prepare_transcriptome_indexes(reference_path, vdj_reference_path):
    """ Use ReadStates of R1/R2 to determine SC3Pv1 vs SC3Pv2 vs SC5P-R1 vs SC5P_auto/SCVDJ.
        Returns (chemistry_name, report, metrics)
        where report is a text report and metrics is a dict """

    ## Index the reference fasta
    fa_path = os.path.join(reference_path, cr_constants.REFERENCE_FASTA_PATH)
    new_fa_path = martian.make_path('ref.fa')

    need_index = True

    if os.path.exists(fa_path + '.fai'):
        # Look for existing .fai file (won't exist for our standard ref packages)
        martian.update_progress('Found genome FASTA index....')
        new_fa_path = fa_path
        need_index = False

    else:
        # Note: this will fail if user's fs doesn't support symlinks
        martian.update_progress('Symlinking genome FASTA...')
        os.symlink(fa_path, new_fa_path)

    if need_index:
        martian.update_progress('Indexing genome...')
        run(['samtools', 'faidx', new_fa_path])

    ## Generate a transcriptome reference from a genome ref
    martian.update_progress('Building transcriptome...')
    gtf_path = os.path.join(reference_path,
                            cr_constants.REFERENCE_GENES_GTF_PATH)
    out_fa_path = martian.make_path('transcriptome.fa')
    # Only index the 1st encountered transcript per gene
    run([
        'detect_chemistry', 'get-transcripts', new_fa_path, gtf_path,
        out_fa_path
    ])

    ## Build kmer index
    martian.update_progress('Building kmer index...')
    kmer_idx_path = martian.make_path('kmers.idx')

    ## Use a larger step size as the reference grows.
    ## This ensure the index size stays sane.
    ## Should get to a step of <10 for the whole genome, which
    ## is still 3x overlap w/ 32-mers
    fa_size = os.path.getsize(os.path.realpath(out_fa_path))
    step = fa_size / 400000000
    skip = step - 1

    index_args = ['detect_chemistry', 'index-transcripts']
    if skip > 0:
        index_args.append('--skip=%d' % skip)

    index_args.extend([out_fa_path, kmer_idx_path])
    run(index_args)

    # Build VDJ kmer index (optional)
    vdj_idx_path = None
    if vdj_reference_path is not None:
        vdj_fa_path = vdj_ref.get_vdj_reference_fasta(vdj_reference_path)
        vdj_idx_path = martian.make_path('vdj_kmers.idx')
        run([
            'detect_chemistry', 'index-transcripts', vdj_fa_path, vdj_idx_path
        ])

    return (kmer_idx_path, vdj_idx_path)
Exemple #5
0
def main(args, outs):
    if not args.sum is None:
        martian.update_progress('%s = %f' %
                                ('+'.join(['%f^2' % v
                                           for v in args.values]), args.sum))