Exemple #1
0
def poop():
    global sources

    meas_focus = get_measurements(sources=sources,
                                  mode='circular',
                                  psfs=psfs_focus,
                                  real=True)
    meas_mid = get_measurements(sources=sources,
                                mode='circular',
                                psfs=psfs_mid,
                                real=True)
    meas_outer = get_measurements(sources=sources,
                                  mode='circular',
                                  psfs=psfs_outer,
                                  real=True)
    meas_csbs = get_measurements(sources=sources,
                                 mode='circular',
                                 psfs=psfs_csbs,
                                 real=True)

    meas_focus = add_noise(meas_focus, model='gaussian', dbsnr=15)
    meas_mid = add_noise(meas_mid, model='gaussian', dbsnr=15)
    meas_outer = add_noise(meas_outer, model='gaussian', dbsnr=15)
    meas_csbs = add_noise(meas_csbs, model='gaussian', dbsnr=15)
    # meas_focus = add_noise(meas_focus, model='poisson', max_count=20)
    # meas_mid = add_noise(meas_mid, model='poisson', max_count=20)
    # meas_outer = add_noise(meas_outer, model='poisson', max_count=20)
    # meas_csbs = add_noise(meas_csbs, model='poisson', max_count=20)

    recon_focus = tikhonov(psfs=psfs_focus,
                           measurements=meas_focus,
                           tikhonov_lam=1e-3)
    recon_mid = tikhonov(psfs=psfs_mid,
                         measurements=meas_mid,
                         tikhonov_lam=1e-3)
    recon_outer = tikhonov(psfs=psfs_outer,
                           measurements=meas_outer,
                           tikhonov_lam=1e-3)
    recon_csbs = tikhonov(psfs=psfs_csbs,
                          measurements=meas_csbs,
                          tikhonov_lam=1e-3)

    recon_focus -= np.mean(recon_focus, axis=(1, 2))[:, np.newaxis, np.newaxis]
    recon_mid -= np.mean(recon_mid, axis=(1, 2))[:, np.newaxis, np.newaxis]
    recon_outer -= np.mean(recon_outer, axis=(1, 2))[:, np.newaxis, np.newaxis]
    recon_csbs -= np.mean(recon_csbs, axis=(1, 2))[:, np.newaxis, np.newaxis]
    sources_comp = sources - np.mean(sources, axis=(1, 2))[:, np.newaxis,
                                                           np.newaxis]

    result_focus = np.sum(compare_ssim(sources_comp, recon_focus))
    result_mid = np.sum(compare_ssim(sources_comp, recon_mid))
    result_outer = np.sum(compare_ssim(sources_comp, recon_outer))
    result_csbs = np.sum(compare_ssim(sources_comp, recon_csbs))

    print('focused SSIM sum:', result_focus)
    print('middle SSIM sum:', result_mid)
    print('outer SSIM sum:', result_outer)
    print('csbs SSIM sum:', result_csbs)

    return [result_focus, result_mid, result_outer, result_csbs]
Exemple #2
0
        def measure_reconstruct():

            noise = 15  # dB SNR

            meas_focus = get_measurements(sources=sources,
                                          mode='circular',
                                          psfs=psfs_focus,
                                          real=True)
            meas_csbs = get_measurements(sources=sources,
                                         mode='circular',
                                         psfs=psfs_csbs,
                                         real=True)

            meas_focus = add_noise(meas_focus, model='gaussian', dbsnr=noise)
            meas_csbs = add_noise(meas_csbs, model='gaussian', dbsnr=noise)

            recon_focus = tikhonov(psfs=psfs_focus,
                                   measurements=meas_focus,
                                   tikhonov_lam=1e-3)
            recon_csbs = tikhonov(psfs=psfs_csbs,
                                  measurements=meas_csbs,
                                  tikhonov_lam=1e-3)
            result_focus = np.sum(compare_ssim(sources, recon_focus))
            result_csbs = np.sum(compare_ssim(sources, recon_csbs))

            ratio = result_csbs / result_focus

            return dict(**locals())
def cost(tikhonov_lam_exp, csbs_lam_exp):

    # csbs_grid
    psfs.copies = np.repeat(12, 12)
    # csbs_focus
    # psfs.copies = np.repeat(12, 2)
    csbs(psfs, sse_cost, 12, lam=10**csbs_lam_exp, order=1)
    measured = get_measurements(psfs=psfs, sources=truth, real=True)
    measured_noisy = add_noise(measured, model='poisson', max_count=500)
    recon = tikhonov(
            sources=measured,
            psfs=psfs,
            measurements=measured_noisy,
            tikhonov_lam=10**tikhonov_lam_exp
    )

    plt.imshow(recon[0])
    plt.show()
    plt.pause(.05)
    return compare_ssim(truth[0], recon[0]) + compare_ssim(truth[1], recon[1])
def cost(lam_exp, time_step_exp):

    recon = ista(psfs=psfs,
                 measurements=measured,
                 lam=10**lam_exp,
                 time_step=10**time_step_exp,
                 iterations=100)[0]

    cost = compare_ssim(truth[0], recon)

    plt.subplot(1, 3, 3)
    plt.title('Reconstruction - SSIM {:.3f}'.format(cost))
    plt.imshow(recon)
    plt.axis('off')
    plt.xlabel('lam_exp={:.3f}\ntime_step_exp={:.3f}')
    plt.show()
    plt.pause(.05)

    return cost if cost > 0 else 0
Exemple #5
0
                              real=True)
meas_csbs = get_measurements(sources=sources,
                             mode='circular',
                             psfs=psfs_csbs,
                             real=True)

meas_focus = add_noise(meas_focus, model='gaussian', dbsnr=noise)
meas_csbs = add_noise(meas_csbs, model='gaussian', dbsnr=noise)

recon_focus = tikhonov(psfs=psfs_focus,
                       measurements=meas_focus,
                       tikhonov_lam=1e-3)
recon_csbs = tikhonov(psfs=psfs_csbs,
                      measurements=meas_csbs,
                      tikhonov_lam=1e-3)
result_focus = np.sum(compare_ssim(sources, recon_focus))
result_csbs = np.sum(compare_ssim(sources, recon_csbs))

print(result_csbs / result_focus, result_focus)

# print('focused SSIM:', result_focus)
# print('csbs SSIM:', result_csbs)

# recon_focus_mean = recon_focus - np.mean(recon_focus, axis=(1, 2))[:, np.newaxis, np.newaxis]
# recon_csbs_mean = recon_csbs - np.mean(recon_csbs, axis=(1, 2))[:, np.newaxis, np.newaxis]
# sources_mean = sources - np.mean(sources, axis=(1, 2))[:, np.newaxis, np.newaxis]

# result_focus_mean = np.sum(compare_ssim(sources_mean, recon_focus_mean))
# result_csbs_mean = np.sum(compare_ssim(sources_mean, recon_csbs_mean))

# print('focused SSIM, mean:', result_focus_mean)
Exemple #6
0
def get_ssim(source, recon):
    return compare_ssim(recon, source)
Exemple #7
0
                                     dbsnr=15,
                                     model='Gaussian')
    measured_noisy_csbs = add_noise(measured_csbs, dbsnr=15, model='Gaussian')

    recon_focus = tikhonov(psfs=psfs_focus,
                           measurements=measured_noisy_focus,
                           tikhonov_lam=1e-3,
                           tikhonov_order=order)
    recon_csbs = tikhonov(psfs=psfs_csbs,
                          measurements=measured_noisy_csbs,
                          tikhonov_lam=1e-3,
                          tikhonov_order=order)

    psnr_focus.append(compare_psnr(sources, recon_focus))
    psnr_csbs.append(compare_psnr(sources, recon_csbs))
    ssim_focus.append(np.sum(compare_ssim(sources, recon_focus)))
    ssim_csbs.append(np.sum(compare_ssim(sources, recon_csbs)))

print('psnr_focus:{} \npsnr_csbs:{} \nssim_focus:{} \nssim_csbs:{}'.format(
    np.array(psnr_focus).mean(),
    np.array(psnr_csbs).mean(),
    np.array(ssim_focus).mean(),
    np.array(ssim_csbs).mean()))

plotter4d(recon_focus,
          title='recon_focus \n ssim:{}  psnr:{}'.format(
              np.array(ssim_focus).mean(),
              np.array(psnr_focus).mean()),
          colorbar=True)
plotter4d(recon_csbs,
          title='recon_csbs \n ssim:{}  psnr:{}'.format(