Exemple #1
0
dist_psfs = (psfs_pos-center_QSO)[:,0]**2+(psfs_pos-center_QSO)[:,1]**2 #The distance of the PSF close to the QSO.
psfs_pos = psfs_pos[dist_psfs.argsort()]  # Sort the PSF order based on their distance.
count = 0

#The following lines are to check if the PSF's Gaussian center is consistent or not with the brighest pixel
PSF_gauss_centers, PSF_bright_centers=[],[]
PSFs_ = []
for i in range(len(psfs_pos)):
    print 'PSF',count
    PSF, PSF_center = cut_center_bright(image=img_sub, center=psfs_pos[i], radius=75,  return_center=True, plot=False, center_float=True)
    PSF_gauss_centers.append(PSF_center)
    _, PSF_br_center = cut_center_bright(image=img_sub, center=psfs_pos[i], radius=75, kernel = 'center_bright', return_center=True, plot=False)
    PSF_bright_centers.append(PSF_br_center)
    #Creat the PSFs mask that block the objects nearby
    _, PSF_mask = mask_obj(img=PSF, exp_sz=1.4,  pltshow = 1)
    if len(PSF_mask) > 1:
        PSF_mask = np.sum(np.asarray(PSF_mask),axis=0)
    elif len(PSF_mask) == 1:
        PSF_mask = PSF_mask[0]
    PSF_mask = (1 - (PSF_mask != 0)*1.)
    PSFs_.append([PSF,PSF_center,PSF_mask])
    count += 1
center_match = (np.sum(abs(np.asarray(PSF_gauss_centers)-np.asarray(PSF_bright_centers)<0.7),axis = 1) == 2)
psf_pos_list = [PSF_gauss_centers[i] for i in range(len(PSFs_)) if center_match[i]==True]
PSFs = [PSFs_[i] for i in range(len(PSFs_)) if center_match[i]==True]

save_loc_png(img_sub,center_QSO,psf_pos_list, ID=ID, label='PSF' ,reg_ty = None)

# Compare the Kron slope of the PSFs:
PSF_list = [PSFs[i][0] for i in range(len(PSFs))]
Exemple #2
0
def decomp(fitsfile, psffile, deepseed, fix_center, runMCMC, name, iresults,
           band):

    #Setting the fitting condition:
    deep_seed = deepseed  #Set as True to put more seed and steps to fit.
    #    pltshow = 1 #Note that setting plt.ion() in line27, the plot won't show anymore if running in terminal.
    pltshow = 0
    pix_scale = 0.168
    fixcenter = fix_center
    run_MCMC = runMCMC
    zp = 27.0
    fitfile = fits.open(fitsfile)
    psf1 = pyfits.getdata(psffile)
    #was 3 before, changed it to 1
    QSO_img1 = fitfile[1].data
    #print(QSO_img1)
    #print(QSO_img1.shape)
    #I CHANGED IT TO 1 IT SHOUDL ABSOLUTELY BE 3
    QSO_std1 = fitfile[3].data**0.5

    frame_size = len(QSO_img1)
    cut_to = 38
    #cut_to = 30
    ct = (frame_size - cut_to) / 2
    '''
    QSO_img = QSO_img1[ct:-ct, ct:-ct]
    QSO_std = QSO_std1[ct:-ct, ct:-ct]
    
    '''
    #print('before for image: ', len(QSO_img1), len(QSO_img1[1]))
    #print('before for std: ', len(QSO_std1), len(QSO_std1[1]))

    #goes [y,x]
    if (len(QSO_img1) - len(QSO_img1[1]) == 0):
        cut_to = len(QSO_img1) - 2
        ct = int((frame_size - cut_to) / 2)
        #print(ct)
        #print('square: ', len(QSO_img1),len(QSO_img1[1]))
        QSO_img = QSO_img1[ct:-ct, ct:-ct]
    if (len(QSO_img1) - len(QSO_img1[1]) > 0):
        cut_to = len(QSO_img1[1]) - 1
        ct = int((frame_size - cut_to) / 2)
        #print('left is bigger', len(QSO_img1),len(QSO_img1[1]))
        diff = len(QSO_img1) - len(QSO_img1[1])
        QSO_img = QSO_img1[ct + diff:-ct, ct:-ct]
        #QSO_img = QSO_img1[20:-ct, ct:-ct]
    if (len(QSO_img1) - len(QSO_img1[1]) < 0):
        cut_to = len(QSO_img1) - 2
        ct = int((frame_size - cut_to) / 2)
        diff = len(QSO_img1) - len(QSO_img1[1])
        QSO_img = QSO_img1[ct + diff:-ct, ct:-ct]
        #print('right is bigger', len(QSO_img1),len(QSO_img1[1]))
        #print(len(QSO_img1), len(QSO_img1[1]))

    #print('after for img: ', len(QSO_img), len(QSO_img[1]))

    #print('ok now QSO_std time')
    if (len(QSO_std1) == len(QSO_std1[1])):
        ct = int((frame_size - cut_to) / 2)
        QSO_std = QSO_std1[ct:-ct, ct:-ct]
    if (len(QSO_std1) - len(QSO_std1[1]) > 0):
        ct = int((frame_size - cut_to) / 2)
        diff = len(QSO_std1) - len(QSO_std1[1])
        QSO_std = QSO_std1[ct + diff:-ct, ct:-ct]
    if (len(QSO_std1) - len(QSO_std1[1]) < 0):
        ct = int((frame_size - cut_to) / 2)
        diff = len(QSO_std1) - len(QSO_std1[1])
        QSO_std = QSO_std1[ct + diff:-ct, ct:-ct]
        #print('fix this!!!')

    #print('after for std: ', len(QSO_std), len(QSO_std[1]))

    #print('psf size before: ', psf1.shape)

    #now do ct for psf
    frame_size = len(psf1)
    cut_to = 39
    ct = int((frame_size - cut_to) / 2)

    if (len(psf1) == len(psf1[1])):
        cut_to = len(psf1) - 2
        ct = int((frame_size - cut_to) / 2)
        psf = psf1[ct:-ct, ct:-ct]
    if (len(psf1) - len(psf1[1]) > 0):
        cut_to = len(psf1[1]) - 1
        ct = int((frame_size - cut_to) / 2)
        #print('weird psf')
        diff = len(psf1) - len(psf1[1])
        psf = psf1[ct + diff:-ct, ct:-ct]
    if (len(psf1) - len(psf1[1]) < 0):
        cut_to = len(psf1) - 2
        ct = int((frame_size - cut_to) / 2)
        #print('weird psf')
        diff = len(psf1) - len(psf1[1])
        psf = psf1[ct:-ct, ct:-ct + diff]

    #print('psf size after: ', psf.shape)

    #if(len(psf1) - len(psf1[1]) == 1):
    #   psf = psf1[ct + 1:-ct, ct:-ct]
    #if(len(psf1) - len(psf1[1]) == -1):
    #   psf = psf1[ct:-ct, ct+1:-ct]
    #print('psf size after: ', psf.shape)

    #print(QSO_img)
    #print(QSO_img.shape)

    #psf = psf1

    #%%
    #==============================================================================
    # input the objects components and parameteres
    #==============================================================================

    ins = iresults[0]['n_sersic']
    iRs = iresults[0]['R_sersic']
    ie1 = iresults[0]['e1']
    ie2 = iresults[0]['e2']
    ixc = iresults[0]['center_x']
    iyc = iresults[0]['center_y']

    objs, Q_index = detect_obj(QSO_img, pltshow=pltshow)
    qso_info = objs[Q_index]
    obj = [objs[i] for i in range(len(objs)) if i != Q_index]
    fixed_source = []
    kwargs_source_init = []
    kwargs_source_sigma = []
    kwargs_lower_source = []
    kwargs_upper_source = []

    fixed_source.append({
        'R_sersic': iRs,
        'n_sersic': ins,
        'e1': ie1,
        'e2': ie2
    })
    kwargs_source_init.append({
        'R_sersic': 0.3,
        'n_sersic': 2.,
        'e1': 0.,
        'e2': 0.,
        'center_x': 0.,
        'center_y': 0.
    })
    kwargs_source_sigma.append({
        'n_sersic': 0.5,
        'R_sersic': 0.5,
        'e1': 0.1,
        'e2': 0.1,
        'center_x': 0.1,
        'center_y': 0.1
    })
    kwargs_lower_source.append({
        'e1': -0.5,
        'e2': -0.5,
        'R_sersic': 0.1,
        'n_sersic': 0.3,
        'center_x': -0.5,
        'center_y': -0.5
    })
    kwargs_upper_source.append({
        'e1': 0.5,
        'e2': 0.5,
        'R_sersic': 3.,
        'n_sersic': 7.,
        'center_x': 0.5,
        'center_y': 0.5
    })
    if len(obj) >= 1:
        for i in range(len(obj)):
            if len(iresults) <= i + 1:
                fixed_source.append({})
                kwargs_source_init.append({
                    'R_sersic': obj[i][1] * pix_scale,
                    'n_sersic': 2.,
                    'e1': 0.,
                    'e2': 0.,
                    'center_x': -obj[i][0][0] * pix_scale,
                    'center_y': obj[i][0][1] * pix_scale
                })
                kwargs_source_sigma.append({
                    'n_sersic': 0.5,
                    'R_sersic': 0.5,
                    'e1': 0.1,
                    'e2': 0.1,
                    'center_x': 0.1,
                    'center_y': 0.1
                })
                kwargs_lower_source.append({
                    'e1':
                    -0.5,
                    'e2':
                    -0.5,
                    'R_sersic':
                    obj[i][1] * pix_scale / 5,
                    'n_sersic':
                    0.3,
                    'center_x':
                    -obj[i][0][0] * pix_scale - 10,
                    'center_y':
                    obj[i][0][1] * pix_scale - 10
                })
                kwargs_upper_source.append({
                    'e1':
                    0.5,
                    'e2':
                    0.5,
                    'R_sersic':
                    3.,
                    'n_sersic':
                    7.,
                    'center_x':
                    -obj[i][0][0] * pix_scale + 10,
                    'center_y':
                    obj[i][0][1] * pix_scale + 10
                })
            else:
                ins = iresults[i + 1]['n_sersic']
                iRs = iresults[i + 1]['R_sersic']
                ie1 = iresults[i + 1]['e1']
                ie2 = iresults[i + 1]['e2']
                ixc = iresults[i + 1]['center_x']
                iyc = iresults[i + 1]['center_y']
                fixed_source.append({
                    'R_sersic': iRs,
                    'n_sersic': ins,
                    'e1': ie1,
                    'e2': ie2
                })
                kwargs_source_init.append({
                    'R_sersic': obj[i][1] * pix_scale,
                    'n_sersic': 2.,
                    'e1': 0.,
                    'e2': 0.,
                    'center_x': -obj[i][0][0] * pix_scale,
                    'center_y': obj[i][0][1] * pix_scale
                })
                kwargs_source_sigma.append({
                    'n_sersic': 0.5,
                    'R_sersic': 0.5,
                    'e1': 0.1,
                    'e2': 0.1,
                    'center_x': 0.1,
                    'center_y': 0.1
                })
                kwargs_lower_source.append({
                    'e1':
                    -0.5,
                    'e2':
                    -0.5,
                    'R_sersic':
                    obj[i][1] * pix_scale / 5,
                    'n_sersic':
                    0.3,
                    'center_x':
                    -obj[i][0][0] * pix_scale - 10,
                    'center_y':
                    obj[i][0][1] * pix_scale - 10
                })
                kwargs_upper_source.append({
                    'e1':
                    0.5,
                    'e2':
                    0.5,
                    'R_sersic':
                    3.,
                    'n_sersic':
                    7.,
                    'center_x':
                    -obj[i][0][0] * pix_scale + 10,
                    'center_y':
                    obj[i][0][1] * pix_scale + 10
                })
    source_params = [
        kwargs_source_init, kwargs_source_sigma, fixed_source,
        kwargs_lower_source, kwargs_upper_source
    ]
    #%%
    #%%
    # =============================================================================
    # Creat the QSO mask
    # =============================================================================
    from mask_objects import mask_obj
    _, _, deblend_sources = mask_obj(QSO_img,
                                     snr=1.2,
                                     npixels=50,
                                     return_deblend=True)

    print("deblend image to find the ID for the Objects for the mask:")
    plt.imshow(deblend_sources,
               origin='lower',
               cmap=deblend_sources.cmap(random_state=12345))
    plt.colorbar()
    if pltshow == 0:
        plt.close()
    #else:
    #plt.show()
    QSO_msk = None

    import os
    if not os.path.exists(
            '/Users/jasminwashington/Google Drive File Stream/My Drive/usrp/git_repo/hostgal/py_tools/targets/shortlist/'
            + name + '/'):
        os.makedirs(
            '/Users/jasminwashington/Google Drive File Stream/My Drive/usrp/git_repo/hostgal/py_tools/targets/shortlist/'
            + name + '/')
    tag = '/Users/jasminwashington/Google Drive File Stream/My Drive/usrp/git_repo/hostgal/py_tools/targets/shortlist/' + name + '/' + name

    #tag = 'home/michelle/Desktop/' + name

    # for if you want to save the image to your computer

    source_result, ps_result, image_ps, image_host, error_map = fit_qso(
        QSO_img,
        psf_ave=psf,
        psf_std=None,
        source_params=source_params,
        QSO_msk=QSO_msk,
        fixcenter=fixcenter,
        pix_sz=pix_scale,
        no_MCMC=(run_MCMC == False),
        QSO_std=QSO_std,
        tag=tag,
        deep_seed=deep_seed,
        pltshow=pltshow,
        corner_plot=False,
        flux_ratio_plot=True,
        dump_result=run_MCMC,
        band=band)

    if pltshow == 0:
        plot_compare = False
        fits_plot = False
    else:
        plot_compare = True
        fits_plot = True

#    print("imps:")
#    print(image_ps)
    worm = np.array(image_ps[0])
    #    print(np.unique(image_ps))
    image_ps = worm
    print("Source")
    print(source_result)
    result, flux_list = transfer_to_result(data=QSO_img,
                                           pix_sz=pix_scale,
                                           source_result=source_result,
                                           ps_result=ps_result,
                                           image_ps=image_ps,
                                           image_host=image_host,
                                           error_map=error_map,
                                           zp=zp,
                                           fixcenter=fixcenter,
                                           ID='Example',
                                           QSO_msk=QSO_msk,
                                           tag=tag,
                                           plot_compare=plot_compare,
                                           band=band)

    if QSO_msk is None:
        QSO_mask = QSO_img * 0 + 1
    dmps = (flux_list[0] - flux_list[1]) * QSO_mask
    hdu = fits.PrimaryHDU(dmps)
    hdu.writeto(
        '/Users/jasminwashington/Google Drive File Stream/My Drive/usrp/git_repo/hostgal/py_tools/targets/shortlist/'
        + name + '/' + name + '_' + band + '.fits',
        overwrite=True)
    hdu1 = fits.PrimaryHDU(flux_list[0])
    hdu1.writeto(
        '/Users/jasminwashington/Google Drive File Stream/My Drive/usrp/git_repo/hostgal/py_tools/targets/shortlist/'
        + name + '/' + name + '_' + band + '_all.fits',
        overwrite=True)
    return result
    ''' 
Exemple #3
0
            for j in range(len(obj)):
                dis = np.sqrt(np.sum((np.asarray(obj[j][0])-np.asarray(obj_temp[i][0]))**2))
                if dis < (obj[j][1]+obj_temp[i][1])/2:
                    count += 1
            if count == 0:
                obj.append(obj_temp[i])
    print("the number of nearby objs:", len(obj))

data_host_list = []
Iband_inf = []

# from regions import PixCoord, EllipsePixelRegion
# from photutils import EllipticalAperture
# aperture = EllipticalAperture(qso_info[0], a, b, theta=theta)
# reg = EllipsePixelRegion(center=center, width=aperture.a*2, height=aperture.b*2, angle=theta)
masks_0 = mask_obj(QSO_img_l[1], snr=1., exp_sz= 1.4, pltshow = 0, npixels=20, return_deblend = False)
masks_1 = mask_obj(QSO_img_l[1], snr=1.4, exp_sz= 1.6, pltshow = 0, npixels=20, return_deblend = False)

QSO_msk = masks_0[0] * (1-masks_1[1][0])
# obj.append(((8, 20),
#  1.0812992677234345,
#  0.8441567009970872))
plt.imshow(QSO_img*QSO_msk, origin='low', norm=LogNorm())
# for i in range(len(obj)):
    # obj_x, obj_y = len(QSO_img)/2 + obj[i][0][0] , len(QSO_img)/2+ obj[i][0][1]
    # plt.text(obj_x, obj_y, "obj{0}".format(i), fontsize=15, color='k')
plt.show()
obj = []
        
#%%
for k in run_list:#len(band_seq)):
Exemple #4
0
# -*- coding: utf-8 -*-
"""
Created on Fri Sep  7 14:39:05 2018

@author: dartoon

Test create mask auto
"""

import numpy as np
import astropy.io.fits as pyfits
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import sys

from mask_objects import mask_obj

import os
path = os.getcwd()
ID = path.split('/')[-2]

QSO_img = pyfits.getdata('test.fits')
masks = mask_obj(img=QSO_img, exp_sz=1.2)

obj_mask = masks[0] + masks[1] + masks[2]
obj_mask = [obj_mask == 0][0] + 0

plt.imshow(obj_mask)
print "the yellow area(==1) is the area to fit"

#kwargs_numerics['mask'] = obj_mask
Exemple #5
0
        plt.show()

    print("The adopted PSF:")

    psf = kernel_util.cut_psf(psf, psf_size=kernel_size)

    plt.imshow(psf, norm=LogNorm(), origin='lower')
    plt.savefig('./zoutput/{0}_psf.png'.format(ID))
    if pltshow == 0:
        plt.close()
    else:
        plt.show()

    from mask_objects import mask_obj
    _, _, deblend_sources = mask_obj(agn_image,
                                     snr=snratio,
                                     npixels=numberpixels,
                                     return_deblend=True)

    print("deblend image to find the ID for the Objects for the mask:")
    plt.imshow(deblend_sources,
               origin='lower',
               cmap=deblend_sources.cmap(random_state=12345))
    plt.colorbar()
    plt.savefig('./zoutput/{0}_mask.png'.format(ID))
    if pltshow == 0:
        plt.close()
    else:
        plt.show()

    if block_id == []:
        QSO_msk = np.ones_like(agn_image)
Exemple #6
0
       psf_size) / 2  # If want to cut to 81, agn_image[ct:-ct,ct:-ct]
psf = psf[pct:-pct, pct:-pct]
psf /= psf.sum()
print "The adopted PSF:"
plt.imshow(psf, norm=LogNorm(), origin='lower')
if pltshow == 0:
    plt.close()
else:
    plt.show()

# =============================================================================
# Creat the QSO mask
# =============================================================================
from mask_objects import mask_obj
_, _, deblend_sources = mask_obj(agn_image,
                                 snr=1.,
                                 npixels=200,
                                 return_deblend=True)

print "deblend image to find the ID for the Objects for the mask:"
plt.imshow(deblend_sources,
           origin='lower',
           cmap=deblend_sources.cmap(random_state=12345))
plt.colorbar()
if pltshow == 0:
    plt.close()
else:
    plt.show()

# Based on the deblend_sources, it is the ID 1 and 2 to block:
block_id = []
if block_id == []:
Exemple #7
0
def itsfits(fitsfile, psffile, deepseed, fix_center, runMCMC):

    #Setting the fitting condition:
    deep_seed = deepseed  #Set as True to put more seed and steps to fit.
    pltshow = 1  #Note that setting plt.ion() in line27, the plot won't show anymore if running in terminal.
    pix_scale = 0.168
    fixcenter = fix_center
    run_MCMC = runMCMC
    zp = 27.0
    fitfile = fits.open(fitsfile)
    psf = pyfits.getdata(psffile)
    QSO_img1 = fitfile[1].data
    #print(QSO_img1)
    #print(QSO_img1.shape)
    QSO_std1 = fitfile[3].data**0.5

    frame_size = len(QSO_img1)
    cut_to = 70
    ct = (frame_size - cut_to) / 2
    #print(frame_size, ct)
    #QSO_img = QSO_img.data[ct:-ct, ct:-ct]
    #QSO_std = QSO_std.data[ct:-ct, ct:-ct]
    QSO_img = QSO_img1[ct:-ct, ct:-ct]
    QSO_std = QSO_std1[ct:-ct, ct:-ct]

    #print(QSO_img)
    #print(QSO_img.shape)

    #%%
    #==============================================================================
    # input the objects components and parameteres
    #==============================================================================

    objs, Q_index = detect_obj(QSO_img, pltshow=pltshow)
    qso_info = objs[Q_index]
    obj = [objs[i] for i in range(len(objs)) if i != Q_index]
    fixed_source = []
    kwargs_source_init = []
    kwargs_source_sigma = []
    kwargs_lower_source = []
    kwargs_upper_source = []
    fixed_source.append({})
    kwargs_source_init.append({
        'R_sersic': 0.3,
        'n_sersic': 2.,
        'e1': 0.,
        'e2': 0.,
        'center_x': 0.,
        'center_y': 0.
    })
    kwargs_source_sigma.append({
        'n_sersic': 0.5,
        'R_sersic': 0.5,
        'e1': 0.1,
        'e2': 0.1,
        'center_x': 0.1,
        'center_y': 0.1
    })
    kwargs_lower_source.append({
        'e1': -0.5,
        'e2': -0.5,
        'R_sersic': 0.1,
        'n_sersic': 0.3,
        'center_x': -0.5,
        'center_y': -0.5
    })
    kwargs_upper_source.append({
        'e1': 0.5,
        'e2': 0.5,
        'R_sersic': 3.,
        'n_sersic': 7.,
        'center_x': 0.5,
        'center_y': 0.5
    })

    if len(obj) >= 1:
        for i in range(len(obj)):
            fixed_source.append({})
            kwargs_source_init.append({
                'R_sersic': obj[i][1] * pix_scale,
                'n_sersic': 2.,
                'e1': 0.,
                'e2': 0.,
                'center_x': -obj[i][0][0] * pix_scale,
                'center_y': obj[i][0][1] * pix_scale
            })
            kwargs_source_sigma.append({
                'n_sersic': 0.5,
                'R_sersic': 0.5,
                'e1': 0.1,
                'e2': 0.1,
                'center_x': 0.1,
                'center_y': 0.1
            })
            kwargs_lower_source.append({
                'e1':
                -0.5,
                'e2':
                -0.5,
                'R_sersic':
                obj[i][1] * pix_scale / 5,
                'n_sersic':
                0.3,
                'center_x':
                -obj[i][0][0] * pix_scale - 10,
                'center_y':
                obj[i][0][1] * pix_scale - 10
            })
            kwargs_upper_source.append({
                'e1':
                0.5,
                'e2':
                0.5,
                'R_sersic':
                3.,
                'n_sersic':
                7.,
                'center_x':
                -obj[i][0][0] * pix_scale + 10,
                'center_y':
                obj[i][0][1] * pix_scale + 10
            })
    source_params = [
        kwargs_source_init, kwargs_source_sigma, fixed_source,
        kwargs_lower_source, kwargs_upper_source
    ]
    #%%
    # =============================================================================
    # Creat the QSO mask
    # =============================================================================
    from mask_objects import mask_obj
    _, _, deblend_sources = mask_obj(QSO_img,
                                     snr=1.2,
                                     npixels=50,
                                     return_deblend=True)

    print "deblend image to find the ID for the Objects for the mask:"
    plt.imshow(deblend_sources,
               origin='lower',
               cmap=deblend_sources.cmap(random_state=12345))
    plt.colorbar()
    if pltshow == 0:
        plt.close()
    else:
        plt.show()
    QSO_msk = None

    tag = 'example'
    source_result, ps_result, image_ps, image_host, error_map = fit_qso(
        QSO_img,
        psf_ave=psf,
        psf_std=None,
        source_params=source_params,
        QSO_msk=QSO_msk,
        fixcenter=fixcenter,
        pix_sz=pix_scale,
        no_MCMC=(run_MCMC == False),
        QSO_std=QSO_std,
        tag=tag,
        deep_seed=deep_seed,
        pltshow=pltshow,
        corner_plot=False,
        flux_ratio_plot=True,
        dump_result=run_MCMC)

    if pltshow == 0:
        plot_compare = False
        fits_plot = False
    else:
        plot_compare = True
        fits_plot = True

    result = transfer_to_result(data=QSO_img,
                                pix_sz=pix_scale,
                                source_result=source_result,
                                ps_result=ps_result,
                                image_ps=image_ps,
                                image_host=image_host,
                                error_map=error_map,
                                zp=zp,
                                fixcenter=fixcenter,
                                ID='Example',
                                QSO_msk=QSO_msk,
                                tag=tag,
                                plot_compare=plot_compare)

    return result