Exemple #1
0
    def run_inference(self, imgs_minibatch):
        with torch.no_grad():
            if self.cfg.TEST.BBOX_AUG.ENABLED:
                output = im_detect_bbox_aug(self.model, imgs_minibatch,
                                            self.device)
            else:
                output = self.model(imgs_minibatch.to(self.device))

            if len(output):
                output = [o.to("cpu") for o in output]
            return output
Exemple #2
0
def compute_on_dataset(model, data_loader, device, timer=None):
    model.eval()
    results_dict = {}
    cpu_device = torch.device("cpu")
    for _, batch in enumerate(tqdm(data_loader)):
        images, targets, image_ids = batch
        with torch.no_grad():
            if timer:
                timer.tic()
            if cfg.TEST.BBOX_AUG.ENABLED:
                output = im_detect_bbox_aug(model, images, device)
            else:
                output = model(images.to(device))
            if timer:
                if not cfg.MODEL.DEVICE == 'cpu':
                    torch.cuda.synchronize()
                timer.toc()
            output = [o.to(cpu_device) for o in output]
        results_dict.update(
            {img_id: result for img_id, result in zip(image_ids, output)}
        )
    return results_dict
Exemple #3
0
    def next_data(self, skip_num=0):
        while skip_num > 0:
            idx, batch = next(self.progress)
            skip_num -= 1

        idx, batch = next(self.progress)
        images, targets, image_ids = batch

        # compability
        kwargs = dict()
        if isinstance(images, dict):
            tmp = images.pop("images")
            for k in images:
                images[k] = (images[k]).to(self.device)
            kwargs.update(images)
            images = tmp
        images = images.to(self.device)
        if isinstance(targets, dict):
            tmp = targets.pop("targets")
            # for k in targets:
            #     targets[k] = [target.to(self.device) for target in targets[k]]
            kwargs.update(targets)
            targets = tmp

        # targets = [target.to(self.device) for target in targets]

        # process image
        with torch.no_grad():
            if self.cfg.TEST.BBOX_AUG.ENABLED:
                result = im_detect_bbox_aug(self.model, images, self.device)
            else:
                result = self.model(images, targets, **kwargs)
            predictions = [o.to(torch.device("cpu")) for o in result["result"]]

        # always single image is passed at a time
        prediction = predictions[0]
        target, image_id = targets[0], image_ids[0]

        img_info = self.data_loader.dataset.get_img_info(image_id)
        image = cv2.imread(
            os.path.join(self.data_loader.dataset.root, img_info['file_name']))

        if len(target) == 0: return image, image

        # reshape prediction (a BoxList) into the original image size
        width = img_info["width"]
        height = img_info["height"]
        focal_length = img_info["camera_params"]["intrinsic"]["fx"]
        baseline = img_info["camera_params"]["extrinsic"]["baseline"]
        # if img_info.get("calib"):
        #     kitti_calib = img_info["calib"]
        # else:
        #     kitti_calib = None
        kitti_calib = img_info["calib"] if img_info.get("calib") else None
        prediction = prediction.resize((width, height))
        target = target.resize((width, height))

        depth_mode = self.data_loader.dataset.output_depth_mode if hasattr(
            self.data_loader.dataset, "output_depth_mode") else "depth"

        # when lr head is on, use union
        # if self.cfg.MODEL.USE_LR_ROI_HEADS:
        #     target = target.convert("xyxy")
        #     disps = target.get_field("depths").convert("disp").depths
        #     target.bbox[:,0] -= disps
        # prediction = prediction.convert("xyxy")
        # depths = PointDepth(prediction.get_field("depths")[0], prediction.size, focal_length=target.get_field("depths").focal_length, baseline=target.get_field("depths").baseline, mode="depth")
        # disps = depths.convert("disp").depths
        # prediction.bbox[:,0] -= disps

        if self.cfg.MODEL.DEPTHNET_ON:
            # get disparity
            disp_output = result["disparity"][0]
            disp_output *= width / 256
            # to numpy
            disp_img = disp_output.cpu().numpy().transpose(1, 2, 0)
            cv2.imshow("disparity", disp_img)
            # disp_gt = cv2.imread(os.path.join(self.data_loader.dataset.root, img_info['disp_file_name']), -cv2.IMREAD_ANYDEPTH)
            # disp_gt = (disp_gt-1)/256./256.
            # cv2.imshow("disparity_gt", disp_gt)
            # cv2.waitKey()

        if self.cfg.MODEL.RPN_ONLY: return None, None

        if prediction.has_field("mask"):
            # if we have masks, paste the masks in the right position
            # in the image, as defined by the bounding boxes
            masks = prediction.get_field("mask")
            # always single image is passed at a time
            masks = self.masker([masks], [prediction])[0]
            prediction.add_field("mask", masks)

        top_predictions = self.select_top_predictions(prediction)
        # print(top_predictions, target)

        # top_predictions = _height_to_depth(top_predictions, img_info)

        # if self.cfg.MODEL.DEPTH_ON or self.cfg.MODEL.BOX3D_ON:
        #     et_match, gt_match = self.match_datas(top_predictions, target)
        #     et_depths = top_predictions.get_field("depths").tolist()
        #     gt_depths = target.get_field("depths")
        #     if isinstance(gt_depths, PointDepth):
        #         gt_depths = gt_depths.depths.tolist()
        #     else:
        #         gt_depths = gt_depths.tolist()
        #     for i,j in zip(et_match, gt_match):
        #         # print(et_depths[i], gt_depths[j])
        #         # abs_err = math.fabs(1/et_depths[i][0]- 1/gt_depths[j]) * focal_length # 1 / depth
        #         abs_err = math.fabs(et_depths[i][0]- gt_depths[j]) #/ width * focal_length # disp_unity
        #         rel_err = math.fabs(et_depths[i][0]- gt_depths[j]) / gt_depths[j] # disp_unity
        #         self.error_stats.append({
        #             "abs_err": abs_err,
        #             "rel_err": rel_err,
        #             "gt": gt_depths[j]
        #         })
        # self.depth_abs_errors.append(abs_err)
        # self.depth_rel_errors.append(rel_err)
        # if len(self.depth_abs_errors)>0:
        #     print(sum(self.depth_abs_errors) / len(self.depth_abs_errors))
        #     print(sum(self.depth_rel_errors) / len(self.depth_rel_errors))

        if not self.test_only:
            result = image.copy()
            if self.show_mask_heatmaps:
                return self.create_mask_montage(result, top_predictions)
            result = self.overlay_boxes(result, top_predictions)
            if self.cfg.MODEL.MASK_ON:
                result = self.overlay_mask(result, top_predictions)
            # if self.cfg.MODEL.KEYPOINT_ON:
            #     result = self.overlay_keypoints(result, top_predictions)
            if self.cfg.MODEL.DEPTH_ON:
                result = self.overlay_depth(result,
                                            top_predictions,
                                            img_info=img_info,
                                            depth_mode=depth_mode)
            if self.cfg.MODEL.BOX3D_ON:
                result = self.overlay_box3d(result,
                                            top_predictions,
                                            calib=kitti_calib)

            result = self.overlay_class_names(result, top_predictions)

        # process ground truth
        # gt_pred = []
        # for obj in target:
        boxes = target.bbox
        if target.has_field("masks"):
            masks = target.get_field("masks").get_mask_tensor()
            # masks = self.masker(masks, boxes)
            target.add_field("mask", masks)
        if target.has_field("keypoints"):
            # add logits
            keypoints = target.get_field("keypoints")
            keypoints.add_field(
                "logits", torch.tensor([[1.] * len(keypoints)] * len(boxes)))
            target.add_field("keypoints", keypoints)
        if target.has_field("depths"):
            depths = target.get_field("depths")
            if isinstance(depths, PointDepth):
                depths = depths.depths
            target.add_field("depths", depths)
        target.add_field("scores", torch.tensor([1.] * len(boxes)))

        # target = _height_to_depth(target, img_info)

        if not self.test_only:
            result_gt = image.copy()
            if self.show_mask_heatmaps:
                return self.create_mask_montage(result_gt, target)
            result_gt = self.overlay_boxes(result_gt, target)
            if self.cfg.MODEL.MASK_ON:
                result_gt = self.overlay_mask(result_gt, target)
            # if self.cfg.MODEL.KEYPOINT_ON:
            #     result_gt = self.overlay_keypoints(result_gt, target)
            if self.cfg.MODEL.DEPTH_ON:
                result_gt = self.overlay_depth(result_gt,
                                               target,
                                               img_info=img_info,
                                               depth_mode=depth_mode)
            if self.cfg.MODEL.BOX3D_ON:
                result_gt = self.overlay_box3d(result_gt,
                                               target,
                                               calib=kitti_calib)
            result_gt = self.overlay_class_names(result_gt, target)

            return result, result_gt

        return None, None
Exemple #4
0
def do_coco_compute_and_evalute(
    model,
    data_loader,
    device,
    output_folder,
):
    model.eval()
    dataset = data_loader.dataset
    masker = Masker(threshold=0.5, padding=1)
    cpu_device = torch.device("cpu")
    logger = logging.getLogger("maskrcnn_benchmark.inference")

    logger.info("Preparing results for COCO format")

    coco_results = {"bbox": [], "segm": []}
    for _, batch in enumerate(tqdm(data_loader)):
        images, targets, image_ids = batch
        with torch.no_grad():
            if cfg.TEST.BBOX_AUG.ENABLED:
                predictions = im_detect_bbox_aug(model, images, device)
            else:
                predictions = model(images.to(device))

        predictions = [p.to(cpu_device) for p in predictions]

        for image_id, prediction, target in zip(image_ids, predictions,
                                                targets):
            original_id = dataset.id_to_img_map[image_id]
            img_info = dataset.get_img_info(image_id)
            w = img_info["width"]
            h = img_info["height"]

            prediction = prediction.resize((w, h))
            prediction = prediction.convert("xywh")

            boxes = prediction.bbox.tolist()
            scores = prediction.get_field("scores").tolist()
            classes = prediction.get_field("labels").tolist()
            masks = prediction.get_field("masks")
            if isinstance(masks, SegmentationMask):
                masks = masks.get_mask_tensor(do_squeeze=False)[:, None]

            # Masker is necessary only if masks haven't been already resized.
            if list(masks.shape[-2:]) != [h, w]:
                masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
                masks = masks[0]

            mapped_labels = [
                dataset.contiguous_category_id_to_json_id[i] for i in classes
            ]
            rles = convert_binary_to_rle(masks.cpu())

            coco_results["bbox"].extend([{
                "image_id": original_id,
                "category_id": mapped_labels[k],
                "bbox": box,
                "score": scores[k],
            } for k, box in enumerate(boxes)])

            coco_results["segm"].extend([{
                "image_id": original_id,
                "category_id": mapped_labels[k],
                "segmentation": rle,
                "score": scores[k],
            } for k, rle in enumerate(rles)])

    iou_types = ["bbox", "segm"]
    results = COCOResults(*iou_types)
    logger.info("Evaluating predictions")
    for iou_type in iou_types:
        with tempfile.NamedTemporaryFile() as f:
            file_path = f.name
            if output_folder:
                file_path = os.path.join(output_folder, iou_type + ".json")
            res = evaluate_predictions_on_coco(dataset.coco,
                                               coco_results[iou_type],
                                               file_path, dataset.ids,
                                               iou_type)
            results.update(res)
    logger.info(results)