Exemple #1
0
    def __call__(self, s):
        '''
			s: direction vector
		'''
        xk = self.xk
        Bk = self.get_hessian_approx()
        fk = self.f(*tvec(xk))
        gk = self.g(*tvec(xk))
        return fk + s.T * gk + self.sigma * norm(s)**3 / 3.
def _backtracking_routine(f, g, x, d, s, a, b):
    fx = f(*tvec(x))
    gtd = (g(*tvec(x)).T * d)[0, 0]
    t = s
    while 1:
        td = t * d
        fxtd = f(*tvec(x + td))

        if fx - fxtd >= -a * t * gtd:
            return t
        t = b * t
Exemple #3
0
    def report(self):
        if self.converged():
            print 'Iterative method successful:', 'Terminated after %d iterations' % self.num_iter
            print 'Optimal Point %s of value = %.5f' % (
                self.xk, self.objective(*tvec(self.xk)))
            print 'Gradient error: %.5f' % self.gradient(*tvec(self.xk))

        elif self.num_iter >= self.max_iter:
            print 'Reached a maximum of %d iterations' % self.max_iter
            print 'Method may not be convergent'
            print 'Gradient error: %.5f' % self.gradient(*tvec(self.xk))

        else:
            print 'The optimizer has not yet finished.'
            print 'Current iterate', self.xk
            print 'Current value', self.objective(*tvec(self.xk))
Exemple #4
0
    def __init__(self, x0, f, g, H=None, B0=None, tol=1e-7, max_iter=10**8):
        '''
			x0: starting vector
			f: smooth objective function
			g: gradint of f
			H: Hessian  of f
			B0: Approximation to H(x0)
		'''
        self.xk = x0
        self.n = len(x0)
        self.num_iter = 0
        self.objective = f
        self.gradient = g
        self.hessian = H
        self.Bk = B0
        self.direction = None
        self.step_length = 0
        self.tol = tol  # tolerence

        self.max_iter = max_iter

        # set default functions

        ## search direction: by default, pick a random vector with components in (0,1). Naive
        self.search_dir_fn = lambda f, g, xk: np.random.random(self.n)

        ## Step length: always 1 by default
        self.step_length_fn = lambda f, g, xk, dk: 1

        ## stopping crietrion: stop when g(xk) has length less then the tolerance
        self.stopping_fn = lambda g, xk: norm(g(*tvec(xk))) < self.tol

        ## Hessian approximation update: unchanged by default
        self.hessian_approx_update = lambda Bk, xk, dk, tk: Bk
Exemple #5
0
    def __init__(self, f, x0, g, H=None, B0=None, sigma0=1, Q=None, T=None):
        '''
			Q is a rectangular matrix such that Q^T*Q = I, n-dimensional
			T = Q^T*B*Q, which will be computed if not specified,
				where B is whichever matrix we use for Hessian approximation
				(could be H(xk) itself)
		'''
        ARCModel.__init__(self, f, x0, g, H, B0, sigma0)
        # if Q is None:
        # 	Q = np.eye(self.n)
        #T = ARCModel.get_hessian_approx(self)
        self.T = T
        self.Q = Q
        #self._actual_g = self.g
        self.g = (lambda g: (lambda x: self.Q.T * g(*tvec(x))))(self.g)
Exemple #6
0
    def __init__(self, f, x0, g, H=None, B0=None, sigma0=1):
        '''
			f: objective function to minimize
			x0: starting vector
			g: gradient of f
			H: exact hessian of f (set to None if unknown)
			B0: initial approximation to the hessian of f at iterate x0
			sigma0>0: initial regularization parameter
		'''
        self.f = f
        self.xk = x0
        self.g = g
        self.H = H
        self.n = len(x0)
        if B0 is None:
            if H is None:
                raise ValueError(
                    'Unknown Hessian: initial guess must be specified')
            B0 = H(*tvec(x0))
        self.Bk = B0
        self.sigma = sigma0
        self.sigma_update_fn = lambda x: x
        self.hessian_update_function = lambda B, x, d: B if H is None else H(
            *tvec(x))
Exemple #7
0
 def get_hessian_approx(self):
     return self.Bk if self.Bk is not None else H(*tvec(self.xk))
    def __init__(self, x0, f, g, H=None, B0=None, tol=1e-7, max_iter=10**8):

        DescentMethod.__init__(self, x0, f, g, H, B0, tol, max_iter)
        self.search_dir_fn = lambda f, g, xk: -g(*tvec(xk))
 def find_opt_length(f, g, x, d):
     if self.ray_fn is None:
         ray_fn = lambda x, d, t: f(*tvec(x + td))
     else:
         ray_fn = self.ray_fn
     return self.min_routine(lambda t: ray_fn(x, d, t))