Exemple #1
0
    def __init__(self, population, sample_size, one_step_proportion=1.0):
        self.one_step_proportion = one_step_proportion
        self.sample_size = sample_size
        self.population = population
        self.neighbours = Collection(population.factory)
        lmbda = -mathln(self.one_step_proportion)

        # We simple iterate over all networks and add to our neighbourhood
        for n in population:
            if one_step_proportion < 1.0:
                mutes = np.random.poisson(lmbda, self.sample_size) + 1
            else:
                mutes = np.ones(self.sample_size, dtype=int)

            network_neighbours = Collection(population.factory)
            network_neighbours.fill_with_mutations(n, mutes)

            # We just add to the main population
            self.neighbours.extend(network_neighbours)
Exemple #2
0
    def __init__(self, center, sample_size, one_step_proportion=1.0):
        # Sample from the neighbourhood
        #
        # @center: our focal network.
        # @one_step_proportion: the proportion of the sample that we want to
        # have only one step mutations
        #
        self.one_step_proportion = one_step_proportion
        self.sample_size = sample_size
        self.center = center

        if one_step_proportion < 1.0:
            # Set lambda so we get the right proportion of one-step neighbours
            lmbda = -mathln(self.one_step_proportion)

            # We want at least one mutation, so add one. Note that the proportion
            # of these that equals 1 should be one_step_proportion.
            self.mutations = np.random.poisson(lmbda, self.sample_size) + 1
        else:
            self.mutations = np.ones(self.sample_size, dtype=int)

        self.neighbours = Collection(center.factory)
        self.neighbours.fill_with_mutations(center, self.mutations)