Exemple #1
0
def compute_mdsi(img1, img2, **kwargs):
    data_range = kwargs.pop("data_range", 1.0)
    use_grayscale = kwargs.pop("use_grayscale", False)

    # MDSI assumes 0-255 dynamic range for the input images
    # rescale both images to 0-255 maintaining the original dynamic range difference ratio
    img1 *= 255.0 / data_range
    img2 *= 255.0 / data_range

    if len(img1.shape) < 3:
        use_grayscale = True

    # MDSI takes 3-channel RGB images
    img1 = ensure3d(img1)
    img2 = ensure3d(img2)

    matlab_eng = mw.get_matlab_instance()
    out, err = mw.get_io_streams()

    path1, path2, tag = mw.imgs_to_unique_mat(img1,
                                              img2,
                                              extra_identifier='mdsi')
    mdsi = matlab_eng.MDSI_wrapper(path1,
                                   path2,
                                   tag,
                                   use_grayscale,
                                   stdout=out,
                                   stderr=err)
    mw.remove_matlab_unique_mat(path1, path2)

    return 1 - mdsi
Exemple #2
0
def compute_hdr_vdp(img1, img2, **kwargs):
    global hdr_vdp_version

    matlab_eng = mw.get_matlab_instance()
    out, err = mw.get_io_streams()

    display_params = kwargs.pop('display_params', None)  # 4 value array or tuple, see below for more info
    color_encoding = kwargs.pop('color_encoding', 'luminance')

    if color_encoding == 'luminance' and (len(img1.shape) > 2 or len(img2.shape) > 2):
        print("WARNING (HDR-VDP wrapper): using 'luminance' color_encoding requires single-channel Luminance (cd/m2) "
              "input but inputs with shapes {} and {} were provided. Will use 'sRGB-display' mode instead."
              .format(img1.shape, img2.shape))
        color_encoding = 'sRGB-display'

    # TODO: maybe refactor this such that s, w, h come from the display model?
    if display_params is None:
        s = 21  # screen size in inches
        w = 1920; h = 1080  # screen resolution
        d = 0.5  # distance to the display
    else:
        s, w, h, d = display_params

    path1, path2, tag = mw.imgs_to_unique_mat(img1, img2, extra_identifier='hdrvdp')
    res = matlab_eng.hdrvdp_wrapper(path1, path2, tag, hdr_vdp_version, color_encoding, [s, w, h, d],
                                    stdout=out, stderr=err)  # redirect prints to dummy I/O streams
    mw.remove_matlab_unique_mat(path1, path2)

    return (res["Q"] / 100.0) if hdr_vdp_version == '2.2.2' else res["Q"] / 10
Exemple #3
0
def compute_fsim(img1, img2, **kwargs):
    data_range = kwargs.pop('data_range', 1.0)

    # FSIM assumes 0-255 dynamic range for the input images
    # rescale both images to 0-255 maintaining the original dynamic range difference ratio
    img1 *= 255.0 / data_range
    img2 *= 255.0 / data_range

    matlab_eng = mw.get_matlab_instance()
    out, err = mw.get_io_streams()

    path1, path2, tag = mw.imgs_to_unique_mat(img1,
                                              img2,
                                              extra_identifier='fsim')
    # Note: For grayscale images, the returned FSIM and FSIMc are the same
    fsim = matlab_eng.fsim_wrapper(path1, path2, tag, stdout=out, stderr=err)
    mw.remove_matlab_unique_mat(path1, path2)

    return fsim
Exemple #4
0
def __compute_similarity(img1, img2, multiscale=True, use_python=False, **kwargs):
    """
        Uses either the original SSIM implementation or its multi-scale variant
    :param img1:
    :param img2:
    :param multiscale: toggle between single- and multi- scale SSIM implementations (SSIM vs MSSIM)
                        Note: this only applies when using MATLAB; only MSSIM is available for Python
    :param use_python:
    :param kwargs:
    :return:
    """

    data_range = kwargs.pop('data_range', 1.0)

    if use_python:
        mat_range = 1.0
        ref = (img1 * mat_range / data_range).astype(np.float)
        A = (img2 * mat_range / data_range).astype(np.float)

        return ssim_py(ref, A, multichannel=True, data_range=mat_range)
    else:
        mat_range = 255.0

        # MATLAB version requires luminance inputs
        if len(img1.shape) == 3:
            img1 = rgb2lum(img1)
            img2 = rgb2lum(img2)

        ref = (img1 * mat_range / data_range).astype(np.int)
        A = (img2 * mat_range / data_range).astype(np.int)

        matlab_eng = mw.get_matlab_instance()
        out, err = mw.get_io_streams()

        path1, path2, tag = mw.imgs_to_unique_mat(A, ref, extra_identifier='ssim')
        ssim = matlab_eng.SSIM_wrapper(path1, path2, tag, multiscale, stdout=out, stderr=err)
        mw.remove_matlab_unique_mat(path1, path2)

        return ssim
Exemple #5
0
def compute_vsi(img1, img2, **kwargs):
    data_range = kwargs.pop("data_range", 1.0)

    # VSI assumes 0-255 dynamic range for the input images
    # rescale both images to 0-255 maintaining the original dynamic range difference ratio
    img1 *= 255.0 / data_range
    img2 *= 255.0 / data_range

    # VSI takes 3-channel RGB images
    img1 = ensure3d(img1)
    img2 = ensure3d(img2)

    matlab_eng = mw.get_matlab_instance()
    out, err = mw.get_io_streams()

    path1, path2, tag = mw.imgs_to_unique_mat(img1,
                                              img2,
                                              extra_identifier='vsi')
    vsi = matlab_eng.vsi_wrapper(path1, path2, tag, stdout=out, stderr=err)
    mw.remove_matlab_unique_mat(path1, path2)

    return vsi