def get_structure_properties(structure: Structure, mode: str = 'all') -> dict: if mode == 'all': featurizer = MultipleFeaturizer([ SiteStatsFingerprint.from_preset( 'CoordinationNumber_ward-prb-2017'), StructuralHeterogeneity(), ChemicalOrdering(), DensityFeatures(), MaximumPackingEfficiency(), SiteStatsFingerprint.from_preset( 'LocalPropertyDifference_ward-prb-2017'), StructureComposition(Stoichiometry()), StructureComposition(ElementProperty.from_preset('magpie')), StructureComposition(ValenceOrbital(props=['frac'])), ]) else: # Calculate only those which do not need a Voronoi tesselation featurizer = MultipleFeaturizer([ DensityFeatures(), StructureComposition(Stoichiometry()), StructureComposition(ElementProperty.from_preset('magpie')), StructureComposition(ValenceOrbital(props=['frac'])), ]) X = featurizer.featurize(structure) matminer_dict = dict(list(zip(featurizer.feature_labels(), X))) matminer_dict['volume'] = structure.volume return matminer_dict
def featurize_structures(self, featurizer=None, **kwargs): """ Featurizes the hypothetical structures available from hypo_structures method. Hypothetical structures for which featurization fails are removed and valid structures are made available as valid_structures Args: featurizer (Featurizer): A MatMiner Featurizer. Defaults to MultipleFeaturizer with PRB Ward Voronoi descriptors. **kwargs (dict): kwargs passed to featurize_many method of featurizer. Returns: (pandas.DataFrame): features """ # Note the redundancy here is for pandas to work if self.hypo_structures is None: warnings.warn("No structures available. Generating structures.") self.get_structures() print("Generating features") featurizer = featurizer if featurizer else MultipleFeaturizer([ SiteStatsFingerprint.from_preset("CoordinationNumber_ward-prb-2017"), StructuralHeterogeneity(), ChemicalOrdering(), MaximumPackingEfficiency(), SiteStatsFingerprint.from_preset("LocalPropertyDifference_ward-prb-2017"), StructureComposition(Stoichiometry()), StructureComposition(ElementProperty.from_preset("magpie")), StructureComposition(ValenceOrbital(props=['frac'])), StructureComposition(IonProperty(fast=True)) ]) features = featurizer.featurize_many( self.hypo_structures['structure'], ignore_errors=True, **kwargs) n_species, formula = [], [] for s in self.hypo_structures['structure']: n_species.append(len(s.composition.elements)) formula.append(s.composition.formula) self._features_df = pd.DataFrame.from_records( features, columns=featurizer.feature_labels()) self._features_df.index = self.hypo_structures.index self._features_df['N_species'] = n_species self._features_df['Composition'] = formula self._features_df['structure'] = self.hypo_structures['structure'] self.features = self._features_df.dropna(axis=0, how='any') self.features = self.features.reindex(sorted(self.features.columns), axis=1) self._valid_structure_labels = list(self.features.index) self.valid_structures = self.hypo_structures.loc[self._valid_structure_labels] print("{} out of {} structures were successfully featurized.".format( self.features.shape[0], self._features_df.shape[0])) return self.features
def test_ordering_param(self): f = ChemicalOrdering() # Check that elemental structures return zero features = f.featurize(self.diamond) self.assertArrayAlmostEqual([0, 0, 0], features) # Check result for CsCl # These were calculated by hand by Logan Ward features = f.featurize(self.cscl) self.assertAlmostEqual(0.551982, features[0], places=5) self.assertAlmostEqual(0.241225, features[1], places=5) # Check for L1_2 features = f.featurize(self.ni3al) self.assertAlmostEqual(1. / 3., features[0], places=5) self.assertAlmostEqual(0.0303, features[1], places=5)
def test_ordering_param(self): f = ChemicalOrdering() # Check that elemental structures return zero features = f.featurize(self.diamond) self.assertArrayAlmostEqual([0, 0, 0], features) # Check result for CsCl # These were calculated by hand by Logan Ward features = f.featurize(self.cscl) self.assertAlmostEqual(0.551982, features[0], places=5) self.assertAlmostEqual(0.241225, features[1], places=5) # Check for L1_2 features = f.featurize(self.ni3al) self.assertAlmostEqual(1./3., features[0], places=5) self.assertAlmostEqual(0.0303, features[1], places=5)
def featurize_structure(df: pd.DataFrame) -> pd.DataFrame: """ Decorate input `pandas.DataFrame` of structures with structural features from matminer. Currently applies the set of all matminer structure features. Args: df (pandas.DataFrame): the input dataframe with `"structure"` column containing `pymatgen.Structure` objects. Returns: pandas.DataFrame: the decorated DataFrame. """ logging.info("Applying structure featurizers...") df = df.copy() structure_features = [ DensityFeatures(), GlobalSymmetryFeatures(), RadialDistributionFunction(), CoulombMatrix(), PartialRadialDistributionFunction(), SineCoulombMatrix(), EwaldEnergy(), BondFractions(), StructuralHeterogeneity(), MaximumPackingEfficiency(), ChemicalOrdering(), XRDPowderPattern(), BagofBonds() ] featurizer = MultipleFeaturizer([feature.fit(df["structure"]) for feature in structure_features]) df = featurizer.featurize_dataframe(df, "structure", multiindex=True, ignore_errors=True) df.columns = df.columns.map('|'.join).str.strip('|') dist = df["RadialDistributionFunction|radial distribution function"][0]['distances'][:50] for i, d in enumerate(dist): _rdf_key = "RadialDistributionFunction|radial distribution function|d_{:.2f}".format(d) df[_rdf_key] = df["RadialDistributionFunction|radial distribution function"].apply(lambda x: x['distribution'][i]) df = df.drop("RadialDistributionFunction|radial distribution function", axis=1) _crystal_system = { "cubic": 1, "tetragonal": 2, "orthorombic": 3, "hexagonal": 4, "trigonal": 5, "monoclinic": 6, "triclinic": 7 } df["GlobalSymmetryFeatures|crystal_system"] = df["GlobalSymmetryFeatures|crystal_system"].map(_crystal_system) df["GlobalSymmetryFeatures|is_centrosymmetric"] = df["GlobalSymmetryFeatures|is_centrosymmetric"].map(int) return clean_df(df)
def similarity(_parents, target): featurizer = MultipleFeaturizer([ SiteStatsFingerprint.from_preset("CoordinationNumber_ward-prb-2017"), StructuralHeterogeneity(), ChemicalOrdering(), MaximumPackingEfficiency(), SiteStatsFingerprint.from_preset( "LocalPropertyDifference_ward-prb-2017"), StructureComposition(Stoichiometry()), StructureComposition(ElementProperty.from_preset("magpie")), StructureComposition(ValenceOrbital(props=["frac"])), StructureComposition(IonProperty(fast=True)), ]) # HACK celery doesn't work with multiprocessing (used by matminer) try: from celery import current_task if current_task: featurizer.set_n_jobs(1) except ImportError: pass x_target = pd.DataFrame.from_records([featurizer.featurize(target)], columns=featurizer.feature_labels()) x_parent = pd.DataFrame.from_records( featurizer.featurize_many(_parents, ignore_errors=True, pbar=False), columns=featurizer.feature_labels(), ) nulls = x_parent[x_parent.isnull().any(axis=1)].index.values x_parent.fillna(100000, inplace=True) x_target = x_target.reindex(sorted(x_target.columns), axis=1) x_parent = x_parent.reindex(sorted(x_parent.columns), axis=1) with open(os.path.join(settings.rxn_files, "scaler2.pickle"), "rb") as f: scaler = pickle.load(f) with open(os.path.join(settings.rxn_files, "quantiles.pickle"), "rb") as f: quantiles = pickle.load(f) X = scaler.transform(x_parent.append(x_target)) D = [pairwise_distances(np.array([row, X[-1]]))[0, 1] for row in X[:-1]] _res = [] for d in D: _res.append(np.linspace(0, 1, 101)[np.abs(quantiles - d).argmin()]) _res = np.array(_res) _res[nulls] = -1 return _res
class DeBreuck2020Featurizer(modnet.featurizers.MODFeaturizer): """ Featurizer presets used for the paper 'Machine learning materials properties for small datasets' by Pierre-Paul De Breuck, Geoffroy Hautier & Gian-Marco Rignanese, arXiv:2004.14766 (2020). Uses most of the featurizers implemented by matminer at the time of writing with their default hyperparameters and presets. """ from matminer.featurizers.composition import ( AtomicOrbitals, AtomicPackingEfficiency, BandCenter, # CohesiveEnergy, - This descriptor was not used in the paper preset # ElectronAffinity, - This descriptor was not used in the paper preset ElectronegativityDiff, ElementFraction, ElementProperty, IonProperty, Miedema, OxidationStates, Stoichiometry, TMetalFraction, ValenceOrbital, YangSolidSolution, ) from matminer.featurizers.structure import ( # BagofBonds, - This descriptor was not used in the paper preset BondFractions, ChemicalOrdering, CoulombMatrix, DensityFeatures, EwaldEnergy, GlobalSymmetryFeatures, MaximumPackingEfficiency, # PartialRadialDistributionFunction, RadialDistributionFunction, SineCoulombMatrix, StructuralHeterogeneity, XRDPowderPattern, ) from matminer.featurizers.site import ( AGNIFingerprints, AverageBondAngle, AverageBondLength, BondOrientationalParameter, ChemEnvSiteFingerprint, CoordinationNumber, CrystalNNFingerprint, GaussianSymmFunc, GeneralizedRadialDistributionFunction, LocalPropertyDifference, OPSiteFingerprint, VoronoiFingerprint, ) composition_featurizers = ( AtomicOrbitals(), AtomicPackingEfficiency(), BandCenter(), ElementFraction(), ElementProperty.from_preset("magpie"), IonProperty(), Miedema(), Stoichiometry(), TMetalFraction(), ValenceOrbital(), YangSolidSolution(), ) oxide_composition_featurizers = ( ElectronegativityDiff(), OxidationStates(), ) structure_featurizers = ( DensityFeatures(), GlobalSymmetryFeatures(), RadialDistributionFunction(), CoulombMatrix(), # PartialRadialDistributionFunction(), SineCoulombMatrix(), EwaldEnergy(), BondFractions(), StructuralHeterogeneity(), MaximumPackingEfficiency(), ChemicalOrdering(), XRDPowderPattern(), # BagofBonds(), ) site_featurizers = ( AGNIFingerprints(), AverageBondAngle(VoronoiNN()), AverageBondLength(VoronoiNN()), BondOrientationalParameter(), ChemEnvSiteFingerprint.from_preset("simple"), CoordinationNumber(), CrystalNNFingerprint.from_preset("ops"), GaussianSymmFunc(), GeneralizedRadialDistributionFunction.from_preset("gaussian"), LocalPropertyDifference(), OPSiteFingerprint(), VoronoiFingerprint(), ) def featurize_composition(self, df): """ Applies the preset composition featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_composition(df) _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4} df['AtomicOrbitals|HOMO_character'] = df[ 'AtomicOrbitals|HOMO_character'].map(_orbitals) df['AtomicOrbitals|LUMO_character'] = df[ 'AtomicOrbitals|LUMO_character'].map(_orbitals) df['AtomicOrbitals|HOMO_element'] = df[ 'AtomicOrbitals|HOMO_element'].apply( lambda x: -1 if not isinstance(x, str) else Element(x).Z) df['AtomicOrbitals|LUMO_element'] = df[ 'AtomicOrbitals|LUMO_element'].apply( lambda x: -1 if not isinstance(x, str) else Element(x).Z) df = df.replace([np.inf, -np.inf, np.nan], 0) return modnet.featurizers.clean_df(df) def featurize_structure(self, df): """ Applies the preset structural featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_structure(df) dist = df[ "RadialDistributionFunction|radial distribution function"].iloc[0][ 'distances'][:50] for i, d in enumerate(dist): _rdf_key = "RadialDistributionFunction|radial distribution function|d_{:.2f}".format( d) df[_rdf_key] = df[ "RadialDistributionFunction|radial distribution function"].apply( lambda x: x['distribution'][i]) df = df.drop("RadialDistributionFunction|radial distribution function", axis=1) _crystal_system = { "cubic": 1, "tetragonal": 2, "orthorombic": 3, "hexagonal": 4, "trigonal": 5, "monoclinic": 6, "triclinic": 7 } def _int_map(x): if x == np.nan: return 0 elif x: return 1 else: return 0 df["GlobalSymmetryFeatures|crystal_system"] = df[ "GlobalSymmetryFeatures|crystal_system"].map(_crystal_system) df["GlobalSymmetryFeatures|is_centrosymmetric"] = df[ "GlobalSymmetryFeatures|is_centrosymmetric"].map(_int_map) return modnet.featurizers.clean_df(df) def featurize_site(self, df): """ Applies the preset site featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ # rename some features for backwards compatibility with pretrained models aliases = { "GeneralizedRadialDistributionFunction": "GeneralizedRDF", "AGNIFingerprints": "AGNIFingerPrint", "BondOrientationalParameter": "BondOrientationParameter", "GaussianSymmFunc": "ChemEnvSiteFingerprint|GaussianSymmFunc", } df = super().featurize_site(df, aliases=aliases) df = df.loc[:, (df != 0).any(axis=0)] return modnet.featurizers.clean_df(df)
class FUTURE_PROSPECTS_2021(featurizer.extendedMODFeaturizer): from matminer.featurizers.composition import ( AtomicOrbitals, AtomicPackingEfficiency, BandCenter, CohesiveEnergy, ElectronAffinity, ElectronegativityDiff, ElementFraction, ElementProperty, IonProperty, Miedema, OxidationStates, Stoichiometry, TMetalFraction, ValenceOrbital, YangSolidSolution, ) from matminer.featurizers.structure import ( BagofBonds, BondFractions, ChemicalOrdering, CoulombMatrix, DensityFeatures, EwaldEnergy, GlobalSymmetryFeatures, MaximumPackingEfficiency, PartialRadialDistributionFunction, RadialDistributionFunction, SineCoulombMatrix, StructuralHeterogeneity, XRDPowderPattern, ) from matminer.featurizers.site import ( AGNIFingerprints, AverageBondAngle, AverageBondLength, BondOrientationalParameter, ChemEnvSiteFingerprint, CoordinationNumber, CrystalNNFingerprint, GaussianSymmFunc, GeneralizedRadialDistributionFunction, LocalPropertyDifference, OPSiteFingerprint, VoronoiFingerprint, ) from matminer.featurizers.dos import ( DOSFeaturizer, SiteDOS, Hybridization, DosAsymmetry, ) from matminer.featurizers.bandstructure import ( BandFeaturizer, BranchPointEnergy ) composition_featurizers = ( AtomicOrbitals(), AtomicPackingEfficiency(), BandCenter(), ElementFraction(), ElementProperty.from_preset("magpie"), IonProperty(), Miedema(), Stoichiometry(), TMetalFraction(), ValenceOrbital(), YangSolidSolution(), ) oxid_composition_featurizers = ( ElectronegativityDiff(), OxidationStates(), ) structure_featurizers = ( DensityFeatures(), GlobalSymmetryFeatures(), RadialDistributionFunction(), CoulombMatrix(), #PartialRadialDistributionFunction(), #Introduces a large amount of features SineCoulombMatrix(), EwaldEnergy(), BondFractions(), StructuralHeterogeneity(), MaximumPackingEfficiency(), ChemicalOrdering(), XRDPowderPattern(), ) site_featurizers = ( AGNIFingerprints(), AverageBondAngle(VoronoiNN()), AverageBondLength(VoronoiNN()), BondOrientationalParameter(), ChemEnvSiteFingerprint.from_preset("simple"), CoordinationNumber(), CrystalNNFingerprint.from_preset("ops"), GaussianSymmFunc(), GeneralizedRadialDistributionFunction.from_preset("gaussian"), LocalPropertyDifference(), OPSiteFingerprint(), VoronoiFingerprint(), ) dos_featurizers = ( DOSFeaturizer(), SiteDOS(), Hybridization() ) band_featurizers = ( BandFeaturizer(), BranchPointEnergy() ) def __init__(self, n_jobs=None): self._n_jobs = n_jobs def featurize_composition(self, df): """Applies the preset composition featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_composition(df) _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4} df["AtomicOrbitals|HOMO_character"] = df["AtomicOrbitals|HOMO_character"].map( _orbitals ) df["AtomicOrbitals|LUMO_character"] = df["AtomicOrbitals|LUMO_character"].map( _orbitals ) df["AtomicOrbitals|HOMO_element"] = df["AtomicOrbitals|HOMO_element"].apply( lambda x: -1 if not isinstance(x, str) else Element(x).Z ) df["AtomicOrbitals|LUMO_element"] = df["AtomicOrbitals|LUMO_element"].apply( lambda x: -1 if not isinstance(x, str) else Element(x).Z ) return clean_df(df) def featurize_structure(self, df): """Applies the preset structural featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_structure(df) dist = df["RadialDistributionFunction|radial distribution function"].iloc[0][ "distances" ][:50] for i, d in enumerate(dist): _rdf_key = "RadialDistributionFunction|radial distribution function|d_{:.2f}".format( d ) df[_rdf_key] = df[ "RadialDistributionFunction|radial distribution function" ].apply(lambda x: x["distribution"][i]) df = df.drop("RadialDistributionFunction|radial distribution function", axis=1) _crystal_system = { "cubic": 1, "tetragonal": 2, "orthorombic": 3, "hexagonal": 4, "trigonal": 5, "monoclinic": 6, "triclinic": 7, } def _int_map(x): if x == np.nan: return 0 elif x: return 1 else: return 0 df["GlobalSymmetryFeatures|crystal_system"] = df[ "GlobalSymmetryFeatures|crystal_system" ].map(_crystal_system) df["GlobalSymmetryFeatures|is_centrosymmetric"] = df[ "GlobalSymmetryFeatures|is_centrosymmetric" ].map(_int_map) return clean_df(df) def featurize_dos(self, df): """Applies the presetdos featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_dos(df) hotencodeColumns = ["DOSFeaturizer|vbm_specie_1","DOSFeaturizer|cbm_specie_1"] one_hot = pd.get_dummies(df[hotencodeColumns]) df = df.drop(hotencodeColumns, axis = 1).join(one_hot) _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4} df["DOSFeaturizer|vbm_character_1"] = df[ "DOSFeaturizer|vbm_character_1" ].map(_orbitals) df["DOSFeaturizer|cbm_character_1"] = df[ "DOSFeaturizer|cbm_character_1" ].map(_orbitals) # Splitting one feature into several floating features # e.g. number;number;number into three columns splitColumns = ["DOSFeaturizer|cbm_location_1", "DOSFeaturizer|vbm_location_1"] for column in splitColumns: try: newColumns = df[column].str.split(";", n = 2, expand = True) for i in range(0,3): df[column + "_" + str(i)] = np.array(newColumns[i]).astype(np.float) except: continue df = df.drop(splitColumns, axis=1) df = df.drop(["dos"], axis=1) return clean_df(df) def featurize_bandstructure(self, df): """Applies the preset band structure featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ df = super().featurize_bandstructure(df) def _int_map(x): if str(x) == "False": return 0 elif str(x) == "True": return 1 df["BandFeaturizer|is_gap_direct"] = df[ "BandFeaturizer|is_gap_direct" ].map(_int_map) df = df.drop(["bandstructure"], axis=1) return clean_df(df) def featurize_site(self, df): """Applies the preset site featurizers to the input dataframe, renames some fields and cleans the output dataframe. """ aliases = { "GeneralizedRadialDistributionFunction": "GeneralizedRDF", "AGNIFingerprints": "AGNIFingerPrint", "BondOrientationalParameter": "BondOrientationParameter", "GaussianSymmFunc": "ChemEnvSiteFingerprint|GaussianSymmFunc", } df = super().featurize_site(df, aliases=aliases) df = df.loc[:, (df != 0).any(axis=0)] return clean_df(df)
def AddFeatures(df): # Add features by Matminer from matminer.featurizers.conversions import StrToComposition df = StrToComposition().featurize_dataframe(df, "formula") from matminer.featurizers.composition import ElementProperty ep_feat = ElementProperty.from_preset(preset_name="magpie") df = ep_feat.featurize_dataframe( df, col_id="composition" ) # input the "composition" column to the featurizer from matminer.featurizers.conversions import CompositionToOxidComposition from matminer.featurizers.composition import OxidationStates df = CompositionToOxidComposition().featurize_dataframe(df, "composition") os_feat = OxidationStates() df = os_feat.featurize_dataframe(df, "composition_oxid") from matminer.featurizers.composition import ElectronAffinity ea_feat = ElectronAffinity() df = ea_feat.featurize_dataframe(df, "composition_oxid", ignore_errors=True) from matminer.featurizers.composition import BandCenter bc_feat = BandCenter() df = bc_feat.featurize_dataframe(df, "composition_oxid", ignore_errors=True) from matminer.featurizers.composition import CohesiveEnergy ce_feat = CohesiveEnergy() df = ce_feat.featurize_dataframe(df, "composition_oxid", ignore_errors=True) from matminer.featurizers.composition import Miedema m_feat = Miedema() df = m_feat.featurize_dataframe(df, "composition_oxid", ignore_errors=True) from matminer.featurizers.composition import TMetalFraction tmf_feat = TMetalFraction() df = tmf_feat.featurize_dataframe(df, "composition_oxid", ignore_errors=True) from matminer.featurizers.composition import ValenceOrbital vo_feat = ValenceOrbital() df = vo_feat.featurize_dataframe(df, "composition_oxid", ignore_errors=True) from matminer.featurizers.composition import YangSolidSolution yss_feat = YangSolidSolution() df = yss_feat.featurize_dataframe(df, "composition_oxid", ignore_errors=True) from matminer.featurizers.structure import GlobalSymmetryFeatures # This is the border between compositional features and structural features. Comment out the following featurizers to use only compostional features. gsf_feat = GlobalSymmetryFeatures() df = gsf_feat.featurize_dataframe(df, "structure", ignore_errors=True) from matminer.featurizers.structure import StructuralComplexity sc_feat = StructuralComplexity() df = sc_feat.featurize_dataframe(df, "structure", ignore_errors=True) from matminer.featurizers.structure import ChemicalOrdering co_feat = ChemicalOrdering() df = co_feat.featurize_dataframe(df, "structure", ignore_errors=True) from matminer.featurizers.structure import MaximumPackingEfficiency mpe_feat = MaximumPackingEfficiency() df = mpe_feat.featurize_dataframe(df, "structure", ignore_errors=True) from matminer.featurizers.structure import MinimumRelativeDistances mrd_feat = MinimumRelativeDistances() df = mrd_feat.featurize_dataframe(df, "structure", ignore_errors=True) from matminer.featurizers.structure import StructuralHeterogeneity sh_feat = StructuralHeterogeneity() df = sh_feat.featurize_dataframe(df, "structure", ignore_errors=True) from matminer.featurizers.structure import SiteStatsFingerprint from matminer.featurizers.site import AverageBondLength from pymatgen.analysis.local_env import CrystalNN bl_feat = SiteStatsFingerprint( AverageBondLength(CrystalNN(search_cutoff=20))) df = bl_feat.featurize_dataframe(df, "structure", ignore_errors=True) from matminer.featurizers.site import AverageBondAngle ba_feat = SiteStatsFingerprint( AverageBondAngle(CrystalNN(search_cutoff=20))) df = ba_feat.featurize_dataframe(df, "structure", ignore_errors=True) from matminer.featurizers.site import BondOrientationalParameter bop_feat = SiteStatsFingerprint(BondOrientationalParameter()) df = bop_feat.featurize_dataframe(df, "structure", ignore_errors=True) from matminer.featurizers.site import CoordinationNumber cn_feat = SiteStatsFingerprint(CoordinationNumber()) df = cn_feat.featurize_dataframe(df, "structure", ignore_errors=True) from matminer.featurizers.structure import DensityFeatures df_feat = DensityFeatures() df = df_feat.featurize_dataframe(df, "structure", ignore_errors=True) return (df)
from matminer.featurizers.site import CoordinationNumber, LocalPropertyDifference from matminer.utils.data import MagpieData element_properties = ('Electronegativity', 'Row', 'Column', 'Number', 'MendeleevNumber', 'AtomicWeight', 'CovalentRadius', 'MeltingT', 'NsValence', 'NpValence', 'NdValence', 'NfValence', 'NValence', 'NsUnfilled', 'NpUnfilled', 'NdUnfilled', 'NfUnfilled', 'NUnfilled', 'GSvolume_pa', 'SpaceGroupNumber', 'GSbandgap', 'GSmagmom') #The following features will be created by using matminer package. featurizer = MultipleFeaturizer([ SiteStatsFingerprint(CoordinationNumber().from_preset('VoronoiNN'), stats=('mean', 'std_dev', 'minimum', 'maximum')), StructuralHeterogeneity(), ChemicalOrdering(), MaximumPackingEfficiency(), SiteStatsFingerprint( LocalPropertyDifference(properties=element_properties), stats=('mean', 'std_dev', 'minimum', 'maximum', 'range')), StructureComposition(Stoichiometry()), StructureComposition(ElementProperty.from_preset("magpie")), StructureComposition(ValenceOrbital(props=['frac'])), StructureComposition(IonProperty(fast=True)) ]) #Generate VT based features from the material's crystal lat_params. feature_data = featurizer.featurize_dataframe(df, col_id=['structure'], ignore_errors=True) #"lat_params","compound possible" and "material_id" are not resonable physical features, so we drop these three columns