def generate_wavelet(list_ecg, parameters, name):
    freq = parameters[0]
    epi_qrs = [parameters[1] for i in range(5)]
    wavelet = fb.WaveletExtraction(epi_qrs=epi_qrs)
    for sig in list_ecg:
        wavelet.evaluete_signal(sig.input_signal, freq, label=sig.label)
    utils.write_file('models/wavelet_model_' + name, wavelet.serialize())
def generate_wavelet(list_ecg, freq, name):
    wavelet = fb.WaveletExtraction()
    for sig in list_ecg:
        wavelet.evaluete_signal(sig.input_signal, freq,
                                is_valey=sig.is_valey)

    utils.write_file('models/wavelet_model_' + name, wavelet.serialize())
def generate_wavelet_db1(list_ecg, freq, name):
    wavelet_db1 = fb.WaveletTransform()
    for sig in list_ecg:
        wavelet_db1.evaluete_signal(sig.input_signal, label=sig.label)

    utils.write_file('models/wavelet_db1_model_' + name,
                     wavelet_db1.serialize())
def generate_morfology(list_ecg, freq, name):
    morfology = fb.MorfologyDetector()
    for sig in list_ecg:
        morfology.evaluete_signal(sig.input_signal,
                                  int(len(sig.input_signal)/2)+1,
                                  is_valey=sig.is_valey)

    utils.write_file('models/morfology_model_' + name, morfology.serialize())
def generate_mathematical(list_ecg, offset, name):
    # Matemathical Models Evaluetion
    list_of_templates = utils.get_default_templates(offset)

    list_of_packets = utils.mp_signal_apply(utils.consume_packet_helper,
                                            list_ecg,
                                            list_of_templates,
                                            workers=3)
    m_model = fb.ECG.build_from_packets(list_of_packets)

    utils.write_file('models/m_model_' + name, m_model.serialize())
def generate_morfology(list_ecg, parameters, name):
    morfology = fb.MorfologyDetector(a=parameters[:2],
                                     b=parameters[2:4],
                                     c=parameters[4:6],
                                     d=parameters[6:])
    for sig in list_ecg:
        morfology.evaluete_signal(sig.input_signal,
                                  int(len(sig.input_signal) / 2) + 1,
                                  is_valey=sig.is_valey,
                                  label=sig.label)

    utils.write_file('models/morfology_model_' + name, morfology.serialize())
 def my_generate_random(list_ecg, offset, name):
     random.results = []
     for sig in list_ecg:
         random.evaluete_signal(sig.input_signal)
     utils.write_file('models/random_model_' + name, random.serialize())
    my_ecg = fb.ECG.build_from_packets(list_of_packets)
    len_packet = 35
    list_ecg = my_ecg.build_packets(len_packet)
    list_ecg = my_ecg.packets
    return list_ecg


if __name__ == '__main__':
    list_ecg = main()
    rd = fb.RandomExtraction(offset=35)

    for sig in list_ecg:
        rd.evaluete_signal(sig.input_signal)

    utils.write_file('teste', rd.serialize())
    data = utils.read_file('teste')
    rd = fb.deserialize(data)
    table = rd.get_table_erros()
    t = []
    for p in list_ecg:
        t.append(p.label)

    t = ['qRs_4' if x == 2 else x for x in t]
    t = ['QS_5' if x == 14 else x for x in t]
    t = ['rRs_8' if x == 10 else x for x in t]
    t = ['RS_9' if x == 5 else x for x in t]
    t = ['artifact' if x in [12, 11, 1, 18, 6, 15, -1] else x for x in t]

    X = table.values
Exemple #9
0
        heart_rate = np.mean(heart_rate)
        labels = [name for x in rpeaks]
        my_ecg = fb.ECG(input_signal=ecg_signal,
                        indicators=rpeaks,
                        labels=labels,
                        is_filtered=False)
        if name == 'qRs_4':
            offset = int(intervals / 7)
        elif name == 'QS_5':
            offset = int(intervals / 7)
        elif name == 'rRs_8':
            offset = int(intervals / 7)
        elif name == 'RS_9':
            offset = int(intervals / 7)
        else:
            offset = int(intervals / 7)
        offset = 40
        my_ecg.packets = my_ecg.build_packets(offset)
        utils.write_file('data/signal_' + name + '_' + str(i),
                         my_ecg.serialize())

list_of_signals = []
for name in ListName:
    for i in range(10):
        data = utils.read_file('data/signal_' + name + '_' + str(i))
        list_of_signals.append(fb.deserialize(data))

for i in range(len(list_of_signals)):
    plt.plot(list_of_signals[i].packets[0].input_signal)
    plt.show()
    plt.close()
    #                                           list_ecg, list_of_templates)
    my_ecg.packets = lst_of_packets
    return my_ecg


if __name__ == '__main__':
    __spec__ = "ModuleSpec(name='builtins', loader=<class '_frozen_importlib.BuiltinImporter'>)"
    results = main()
    error = results.get_errors_table()

    param1 = results.get_param_table()
    [signals, models, names, errors,
     types] = results.get_signals_and_models(normalized=False, only_best=True)
    data = results.serialize()

    utils.write_file('outfile', data)
    data = utils.read_file('outfile')

    c = fb.deserialize(data)

#    t = []
#    for p in results.packets:
#        t.append(p.label)
#
#    error['types'] = [int(x) for x in types]
#    X = error.values
#
#
#    X_train, X_test, y_train, y_test = train_test_split(
#            X, t, test_size=0.4, random_state=0)
#
Exemple #11
0
def generate_hermite(list_ecg, freq, name):
    hermite = fb.HermiteExtraction()
    for sig in list_ecg:
        hermite.evaluete_signal(sig.input_signal, label=sig.label)

    utils.write_file('models/hermite_model_' + name, hermite.serialize())
Exemple #12
0
def generate_hos(list_ecg, freq, name):
    hos = fb.HOSExtraction()
    for sig in list_ecg:
        hos.evaluete_signal(sig.input_signal, label=sig.label)

    utils.write_file('models/hos_model_' + name, hos.serialize())
Exemple #13
0
def generate_ulbp(list_ecg, freq, name):
    ulbp = fb.ULBP1DExtraction()
    for sig in list_ecg:
        ulbp.evaluete_signal(sig.input_signal, label=sig.label)

    utils.write_file('models/ulbp_model_' + name, ulbp.serialize())