def plot_das(res: xr.Dataset, ax: Axis, title: str = "DAS", cycler: Cycler | None = PlotStyle().cycler) -> None: """Plot DAS (Decay Associated Spectra) on ``ax``. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. title : str Title of the plot. Defaults to "DAS". cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. """ add_cycler_if_not_none(ax, cycler) keys = [ v for v in res.data_vars if v.startswith(("decay_associated_spectra", "species_spectra")) ] for key in keys: das = res[key] das.plot.line(x="spectral", ax=ax) ax.set_title(title) ax.get_legend().remove()
def plot_rsv_residual( res: xr.Dataset, ax: Axis, indices: Sequence[int] = range(2), cycler: Cycler | None = PlotStyle().cycler, show_legend: bool = True, ) -> None: """Plot right singular vectors (spectra) of the residual matrix. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. indices : Sequence[int] Indices of the singular vector to plot. Defaults to range(4). cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. show_legend: bool Whether or not to show the legend. Defaults to True. """ add_cycler_if_not_none(ax, cycler) if "weighted_residual_right_singular_vectors" in res: rRSV = res.weighted_residual_right_singular_vectors else: rRSV = res.residual_right_singular_vectors _plot_svd_vetors(rRSV, indices, "right_singular_value_index", ax, show_legend) ax.set_title("res. RSV")
def plot_norm_sas(res: xr.Dataset, ax: Axis, title: str = "norm SAS", cycler: Cycler | None = PlotStyle().cycler) -> None: """Plot normalized SAS (Species Associated Spectra) on ``ax``. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. title : str Title of the plot. Defaults to "norm SAS". cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. """ add_cycler_if_not_none(ax, cycler) keys = [ v for v in res.data_vars if v.startswith(("species_associated_spectra", "species_spectra")) ] for key in keys: sas = res[key] # sas = res.species_associated_spectra (sas / np.abs(sas).max(dim="spectral")).plot.line(x="spectral", ax=ax) ax.set_title(title) ax.get_legend().remove()
def plot_sv_residual( res: xr.Dataset, ax: Axis, indices: Sequence[int] = range(10), cycler: Cycler | None = PlotStyle().cycler, ) -> None: """Plot singular values of the residual matrix. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. indices : Sequence[int] Indices of the singular vector to plot. Defaults to range(4). cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. """ add_cycler_if_not_none(ax, cycler) if "weighted_residual_singular_values" in res: rSV = res.weighted_residual_singular_values else: rSV = res.residual_singular_values rSV.sel(singular_value_index=indices[:len(rSV.singular_value_index)] ).plot.line("ro-", yscale="log", ax=ax) ax.set_title("res. log(SV)")
def plot_concentrations( res: xr.Dataset, ax: Axis, center_λ: float | None, linlog: bool = False, linthresh: float = 1, linscale: float = 1, main_irf_nr: int = 0, cycler: Cycler | None = PlotStyle().cycler, title: str = "Concentrations", ) -> None: """Plot traces on the given axis ``ax``. Parameters ---------- res: xr.Dataset Result dataset from a pyglotaran optimization. ax: Axis Axis to plot the traces on center_λ: float | None Center wavelength (λ in nm) linlog: bool Whether to use 'symlog' scale or not. Defaults to False. linthresh: float A single float which defines the range (-x, x), within which the plot is linear. This avoids having the plot go to infinity around zero. Defaults to 1. linscale: float This allows the linear range (-linthresh to linthresh) to be stretched relative to the logarithmic range. Its value is the number of decades to use for each half of the linear range. For example, when linscale == 1.0 (the default), the space used for the positive and negative halves of the linear range will be equal to one decade in the logarithmic range. Defaults to 1. main_irf_nr: int Index of the main ``irf`` component when using an ``irf`` parametrized with multiple peaks. Defaults to 0. cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().data_cycler_solid. title: str Title used for the plot axis. Defaults to "Concentrations". See Also -------- get_shifted_traces """ add_cycler_if_not_none(ax, cycler) traces = get_shifted_traces(res, center_λ, main_irf_nr) if "spectral" in traces.coords: traces.sel(spectral=center_λ, method="nearest").plot.line(x="time", ax=ax) else: traces.plot.line(x="time", ax=ax) ax.set_title(title) if linlog: ax.set_xscale("symlog", linthresh=linthresh, linscale=linscale)
def _adjust(self, ax: Axis, to: Union[bool, float], default: float, side: int) -> float: if to is False: return default try: return float(to) except ValueError: pass vals = ax.get_majorticklocs() if self.major else ax.get_minorticklocs() return vals[side]
def set_axis_tick_label_rotation(ax: Axis, rotation: int): """ Set the rotation of axis tick labels. :param ax: The axis whose tick label rotation to set. :param rotation: The rotation value to set. """ if ax.get_majorticklabels(): plt.setp(ax.get_majorticklabels(), rotation=rotation) if ax.get_minorticklabels(): plt.setp(ax.get_minorticklabels(), rotation=rotation)
def transform_axis_tick_labels(ax: Axis, transformation: FunctionType): """ Transforms the labels of each label along the axis by a transformation function. :param ax: The axis whose tick labels to transform. :param transformation: The transformation function e.g. `lambda t: t.split('T')[0]`. """ ax.figure.canvas.draw() # make sure the figure has been drawn so the labels are available to be got labels = ax.get_ticklabels() for label in labels: new_label = transformation(label.get_text()) label.set_text(new_label) ax.set_ticklabels(labels)
def _remove_labels_from_axis(axis: Axis): for t in axis.get_majorticklabels(): t.set_visible(False) # set_visible will not be effective if # minor axis has NullLocator and NullFormatter (default) if isinstance(axis.get_minor_locator(), ticker.NullLocator): axis.set_minor_locator(ticker.AutoLocator()) if isinstance(axis.get_minor_formatter(), ticker.NullFormatter): axis.set_minor_formatter(ticker.FormatStrFormatter("")) for t in axis.get_minorticklabels(): t.set_visible(False) axis.get_label().set_visible(False)
def add_to_plot(self, ax: Axis, N: int = 201, xrange: Tuple[float] = None, xscale: float = 1, yscale: float = 1, **kwargs): """Add fit to existing plot axis Args: ax: Axis to add plot to N: number of points to use as x values (to smoothe fit curve) xrange: Optional range for x values (min, max) xscale: value to multiple x values by to rescale axis yscale: value to multiple y values by to rescale axis kwargs: Additional plot kwargs. By default Fit.plot_kwargs are used Returns: plot_handle of fit curve """ if xrange is None: x_vals = self.xvals x_vals_full = np.linspace(min(x_vals), max(x_vals), N) else: x_vals_full = np.linspace(*xrange, N) y_vals_full = self.fit_result.eval( **{self.sweep_parameter: x_vals_full}) x_vals_full *= xscale y_vals_full *= yscale plot_kwargs = {**self.plot_kwargs, **kwargs} self.plot_handle, = ax.plot(x_vals_full, y_vals_full, **plot_kwargs) return self.plot_handle
def add_cycler_if_not_none(axis: Axis, cycler: Cycler | None) -> None: """Add cycler to and axis if it is not None. This is a convenience function that allow to opt out of using a cycler, which is needed to run a plotting function in a loop where the cycler is controlled from the outside. Parameters ---------- axis: Axis Axis to plot the data and fits on. cycler: Cycler | None Plot style cycler to use. """ if cycler is not None: axis.set_prop_cycle(cycler)
def plot_residual( res: xr.Dataset, ax: Axis, linlog: bool = False, linthresh: float = 1, show_data: bool = False, cycler: Cycler | None = PlotStyle().cycler, ) -> None: """Plot data or residual on a 2D contour plot. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. linlog : bool Whether to use 'symlog' scale or not. Defaults to False. linthresh : float A single float which defines the range (-x, x), within which the plot is linear. This avoids having the plot go to infinity around zero. Defaults to 1. show_data : bool Whether to show the data or the residual. Defaults to False. cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. """ add_cycler_if_not_none(ax, cycler) data = res.data if show_data else res.residual title = "dataset" if show_data else "residual" shape = np.array(data.shape) dims = data.coords.dims # Handle different dimensionality of data if min(shape) == 1: data.plot.line(x=dims[shape.argmax()], ax=ax) elif min(shape) < 5: data.plot(x="time", ax=ax) else: data.plot(x="time", ax=ax, add_colorbar=False) if linlog: ax.set_xscale("symlog", linthresh=linthresh) ax.set_title(title)
def plot_track( self, axis: Axis = None, show: bool = False, color: str = 'k', coastline: bool = True, **kwargs, ): kwargs.update({'color': color}) if axis is None: fig = pyplot.figure() axis = fig.add_subplot(111) data = self.data for i, (_, row) in enumerate(data.iterrows()): # when dealing with nautical degrees, U is sine and V is cosine. U = row['speed'] * numpy.sin(numpy.deg2rad(row['direction'])) V = row['speed'] * numpy.cos(numpy.deg2rad(row['direction'])) axis.quiver(row['longitude'], row['latitude'], U, V, **kwargs) if i % 6 == 0: axis.annotate( row['datetime'], (row['longitude'], row['latitude']), ) if show: axis.axis('scaled') if bool(coastline) is True: plot_coastline(axis, show)
def _plot_svd_vetors( vector_data: xr.DataArray, indices: Sequence[int], sv_index_dim: str, ax: Axis, show_legend: bool, ) -> None: """Plot SVD vectors with decreasing zorder on axis ``ax``. Parameters ---------- vector_data: xr.DataArray DataArray containing the SVD vector data. indices: Sequence[int] Indices of the singular vector to plot. sv_index_dim: str Name of the singular value index dimension. ax: Axis Axis to plot on. show_legend: bool Whether or not to show the legend. See Also -------- plot_lsv_data plot_rsv_data plot_lsv_residual plot_rsv_residual """ max_index = len(getattr(vector_data, sv_index_dim)) values = vector_data.isel(**{sv_index_dim: indices[:max_index]}) x_dim = vector_data.dims[1] if x_dim == sv_index_dim: values = values.T x_dim = vector_data.dims[0] for index, (zorder, value) in enumerate(zip(range(100)[::-1], values)): value.plot.line(x=x_dim, ax=ax, zorder=zorder, label=index) if show_legend is True: ax.legend(title=sv_index_dim)
def plot_lsv_residual( res: xr.Dataset, ax: Axis, indices: Sequence[int] = range(2), linlog: bool = False, linthresh: float = 1, cycler: Cycler | None = PlotStyle().cycler, show_legend: bool = True, ) -> None: """Plot left singular vectors (time) of the residual matrix. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. indices : Sequence[int] Indices of the singular vector to plot. Defaults to range(4). linlog : bool Whether to use 'symlog' scale or not. Defaults to False. linthresh : float A single float which defines the range (-x, x), within which the plot is linear. This avoids having the plot go to infinity around zero. Defaults to 1. cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. show_legend: bool Whether or not to show the legend. Defaults to True. """ add_cycler_if_not_none(ax, cycler) if "weighted_residual_left_singular_vectors" in res: rLSV = res.weighted_residual_left_singular_vectors else: rLSV = res.residual_left_singular_vectors _plot_svd_vetors(rLSV, indices, "left_singular_value_index", ax, show_legend) ax.set_title("res. LSV") if linlog: ax.set_xscale("symlog", linthresh=linthresh)
def plot_interactions(locations: List[str], latent_graph: ndarray, map: Basemap, ax: Axis, skip_first: bool = False): """ Given station ids and latent graph plot edges in different colors """ # Transform lan/lot into region-specific values pixel_coords = [map(*coords) for coords in locations] # Draw contours and borders map.shadedrelief() map.drawcountries() # m.bluemarble() # m.etopo() # Plot Locations of weather stations for i, (x, y) in enumerate(pixel_coords): ax.plot(x, y, 'ok', markersize=10, color='yellow') ax.text(x + 10, y + 10, "Station " + str(i), fontsize=20, color='yellow'); # Infer number of edge types and atoms from latent graph n_atoms = latent_graph.shape[-1] n_edge_types = latent_graph.shape[0] color_map = get_cmap('Set1') for i in range(n_atoms): for j in range(n_atoms): for edge_type in range(n_edge_types): if latent_graph[edge_type, i, j] > 0.5: if skip_first and edge_type == 0: continue # Draw line between points x = locations[i] y = locations[j] map.drawgreatcircle(x[0], x[1], y[0], y[1], color=color_map(edge_type - 1), label=str(edge_type)) handles, labels = ax.get_legend_handles_labels() unique = [(h, l) for i, (h, l) in enumerate(zip(handles, labels)) if l not in labels[:i]] ax.legend(*zip(*unique)) return ax
def add_to_plot(self, ax: Axis, N: int = 201, xrange: Tuple[float] = None, xscale: float = 1, yscale: float = 1, **kwargs): """Add fit to existing plot axis Args: ax: Axis to add plot to N: number of points to use as x values (to smoothe fit curve) xrange: Optional range for x values (min, max) xscale: value to multiple x values by to rescale axis yscale: value to multiple y values by to rescale axis kwargs: Additional plot kwargs. By default Fit.plot_kwargs are used Returns: plot_handle of fit curve """ if xrange is None: x_vals = self.xvals x_vals_full = np.linspace(min(x_vals), max(x_vals), N) else: x_vals_full = np.linspace(*xrange, N) y_vals_full = self.fit_result.eval( **{self.sweep_parameter: x_vals_full}) x_vals_full *= xscale y_vals_full *= yscale # Set default plot kwargs while de-aliasing (e.g. 'lw' -> 'linewidth') # kwargs to prevent duplicate keys kwargs = { **self.default_plot_kwargs, **cbook.normalize_kwargs(kwargs, mlines.Line2D) } self.plot_handle, = ax.plot(x_vals_full, y_vals_full, **kwargs) return self.plot_handle
def restore_axis_state(axis: Axis, state: dict): if state['grid']: axis.grid(True, **state['grid']) else: axis.grid(False)
def plot_data_and_fits( result: ResultLike, wavelength: float, axis: Axis, center_λ: float | None = None, main_irf_nr: int = 0, linlog: bool = False, linthresh: float = 1, divide_by_scale: bool = True, per_axis_legend: bool = False, y_label: str = "a.u.", cycler: Cycler | None = PlotStyle().data_cycler_solid, ) -> None: """Plot data and fits for a given ``wavelength`` on a given ``axis``. If the wavelength isn't part of a dataset, that dataset will be skipped. Parameters ---------- result : ResultLike Data structure which can be converted to a mapping. wavelength : float Wavelength to plot data and fits for. axis: Axis Axis to plot the data and fits on. center_λ: float | None Center wavelength (λ in nm) main_irf_nr : int Index of the main ``irf`` component when using an ``irf`` parametrized with multiple peaks. Defaults to 0. linlog : bool Whether to use 'symlog' scale or not. Defaults to False. linthresh : float A single float which defines the range (-x, x), within which the plot is linear. This avoids having the plot go to infinity around zero. Defaults to 1. divide_by_scale : bool Whether or not to divide the data by the dataset scale used for optimization. Defaults to True. per_axis_legend: bool Whether to use a legend per plot or for the whole figure. Defaults to False. y_label: str Label used for the y-axis of each subplot. cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().data_cycler_solid. See Also -------- plot_fit_overview """ result_map = result_dataset_mapping(result) add_cycler_if_not_none(axis, cycler) for dataset_name in result_map.keys(): spectral_coords = result_map[dataset_name].coords["spectral"].values if spectral_coords.min() <= wavelength <= spectral_coords.max(): result_data = result_map[dataset_name].sel(spectral=[wavelength], method="nearest") scale = extract_dataset_scale(result_data, divide_by_scale) irf_loc = extract_irf_location(result_data, center_λ, main_irf_nr) result_data = result_data.assign_coords( time=result_data.coords["time"] - irf_loc) (result_data.data / scale).plot(x="time", ax=axis, label=f"{dataset_name}_data") (result_data.fitted_data / scale).plot(x="time", ax=axis, label=f"{dataset_name}_fit") else: [next(axis._get_lines.prop_cycler) for _ in range(2)] if linlog: axis.set_xscale("symlog", linthresh=linthresh) axis.set_ylabel(y_label) if per_axis_legend is True: axis.legend()
def file_vs_value_plot( a_x: Axis, field_name: str, row: pd.DataFrame, range_columns: List[str], fontsize: float, pad: float ) -> None: """Create a dot plot with one point per file""" assert field_name in ["rt_peak", "peak_height"] a_x.tick_params(direction="in", length=1, pad=pad, width=0.1, labelsize=fontsize) num_files = len(range_columns) a_x.scatter(range(num_files), row[:num_files], s=0.2) if field_name == "rt_peak": a_x.axhline(y=row["atlas RT peak"], color="r", linestyle="-", linewidth=0.2) range_columns += ["atlas RT peak"] a_x.set_ylim(np.nanmin(row.loc[range_columns]) - 0.12, np.nanmax(row.loc[range_columns]) + 0.12) else: a_x.set_yscale("log") a_x.set_ylim(bottom=1e4, top=1e10) a_x.set_xlim(-0.5, num_files + 0.5) a_x.xaxis.set_major_locator(mticker.FixedLocator(np.arange(0, num_files, 1.0))) _ = [s.set_linewidth(0.1) for s in a_x.spines.values()] # truncate name so it fits above a single subplot a_x.set_title(row.name[:33], pad=pad, fontsize=fontsize) a_x.set_xlabel("Files", labelpad=pad, fontsize=fontsize) ylabel = "Actual RTs" if field_name == "rt_peak" else "Peak Height" a_x.set_ylabel(ylabel, labelpad=pad, fontsize=fontsize)
# xtick_pos = np.arange(0, bars+1) # # print(bars) # fig, ax = plt.subplots() # print(var1.size) delta = dt.timedelta(days=1) dates = pd.date_range(begin_date1, end_date1, freq='1D') print(dates) fig, ax = plt.subplots() ax.bar(dates, var1) ax.set_xlim(dates[0], dates[-1] + delta) ax.xaxis.set_major_locator(DayLocator(interval=7)) Axis.set_minor_locator(ax.xaxis, DayLocator()) ax.xaxis.set_major_formatter(DateFormatter('%d.%m')) ax.fmt_xdata = DateFormatter('%Y-%m-%d %H:%M:%S') fig.autofmt_xdate() fig.suptitle( "Диаграмма изменчивости суточного гидротермического коэффициента Селянинова\n" + r"%s год" % (begin_date1.strftime("%Y")) + "\n" + r"вегетационный период с %s по %s" % (begin_date1.strftime("%d.%m"), end_date1.strftime("%d.%m")), fontsize=12, fontweight='bold') plt.show()
def plot_heated_stacked_area(df: pd.DataFrame, lines: str, heat: str, backtest: str = None, reset_y_lim: bool = False, figsize: Tuple[int, int] = (16, 9), color_map: str = 'afmhot', ax: Axis = None, upper_lower_missing_scale: float = 0.05) -> Axis: color_function = plt.get_cmap(color_map) x = df.index y = df[lines].values c = df[heat].values b = df[backtest].values if backtest is not None else None # assert enough data assert len(y.shape) > 1 and len( c.shape) > 1, "lines and heat need to be 2 dimensions!" # make sure we have one more line as heats if c.shape[1] == y.shape[1] + 1: lower = np.full((c.shape[0], 1), y.min() * (1 - upper_lower_missing_scale)) upper = np.full((c.shape[0], 1), y.max() * (1 + upper_lower_missing_scale)) y = np.hstack([lower, y, upper]) # check for matching columns assert y.shape[1] - 1 == c.shape[ 1], f'unexpeced shapes: {y.shape[1] - 1} != {c.shape[1]}' _, ax = plt.subplots(figsize=figsize) if ax is None else (None, ax) ax.plot(x, y, color='k', alpha=0.0) for ci in range(c.shape[1]): for xi in range(len(x)): ax.fill_between(x[xi - 1:xi + 1], y[xi - 1:xi + 1, ci], y[xi - 1:xi + 1, ci + 1], facecolors=color_function(c[xi - 1:xi + 1, ci])) if ci > 0: # todo annotate all first last and only convert date if it is actually a date ax.annotate(f'{y[-1, ci]:.2f}', xy=(mdates.date2num(x[-1]), y[-1, ci]), xytext=(4, -4), textcoords='offset pixels') # reset limits ax.autoscale(tight=True) if reset_y_lim: ax.set_ylim(bottom=y[:, 1].min(), top=y[:, -1].max()) # backtest if backtest: ax.plot(x, b) return ax
def control_plot(data: (List[int], List[float], pd.Series, np.array), upper_control_limit: (int, float), lower_control_limit: (int, float), highlight_beyond_limits: bool = True, highlight_zone_a: bool = True, highlight_zone_b: bool = True, highlight_zone_c: bool = True, highlight_trend: bool = True, highlight_mixture: bool = True, highlight_stratification: bool = True, highlight_overcontrol: bool = True, ax: Axis = None): """ Create a control plot based on the input data. :param data: a list, pandas.Series, or numpy.array representing the data set :param upper_control_limit: an integer or float which represents the upper control limit, commonly called the UCL :param lower_control_limit: an integer or float which represents the upper control limit, commonly called the UCL :param highlight_beyond_limits: True if points beyond limits are to be highlighted :param highlight_zone_a: True if points that are zone A violations are to be highlighted :param highlight_zone_b: True if points that are zone B violations are to be highlighted :param highlight_zone_c: True if points that are zone C violations are to be highlighted :param highlight_trend: True if points that are trend violations are to be highlighted :param highlight_mixture: True if points that are mixture violations are to be highlighted :param highlight_stratification: True if points that are stratification violations are to be highlighted :param highlight_overcontrol: True if points that are overcontrol violations are to be hightlighted :param ax: an instance of matplotlib.axis.Axis :return: None """ data = coerce(data) if ax is None: fig, ax = plt.subplots() ax.plot(data) ax.set_title('Zone Control Chart') spec_range = (upper_control_limit - lower_control_limit) / 2 spec_center = lower_control_limit + spec_range zone_c_upper_limit = spec_center + spec_range / 3 zone_c_lower_limit = spec_center - spec_range / 3 zone_b_upper_limit = spec_center + 2 * spec_range / 3 zone_b_lower_limit = spec_center - 2 * spec_range / 3 zone_a_upper_limit = spec_center + spec_range zone_a_lower_limit = spec_center - spec_range ax.axhline(spec_center, linestyle='--', color='red', alpha=0.6) ax.axhline(zone_c_upper_limit, linestyle='--', color='red', alpha=0.5) ax.axhline(zone_c_lower_limit, linestyle='--', color='red', alpha=0.5) ax.axhline(zone_b_upper_limit, linestyle='--', color='red', alpha=0.3) ax.axhline(zone_b_lower_limit, linestyle='--', color='red', alpha=0.3) ax.axhline(zone_a_upper_limit, linestyle='--', color='red', alpha=0.2) ax.axhline(zone_a_lower_limit, linestyle='--', color='red', alpha=0.2) left, right = ax.get_xlim() right_plus = (right - left) * 0.01 + right ax.text(right_plus, upper_control_limit, s='UCL', va='center') ax.text(right_plus, lower_control_limit, s='LCL', va='center') ax.text(right_plus, (spec_center + zone_c_upper_limit) / 2, s='Zone C', va='center') ax.text(right_plus, (spec_center + zone_c_lower_limit) / 2, s='Zone C', va='center') ax.text(right_plus, (zone_b_upper_limit + zone_c_upper_limit) / 2, s='Zone B', va='center') ax.text(right_plus, (zone_b_lower_limit + zone_c_lower_limit) / 2, s='Zone B', va='center') ax.text(right_plus, (zone_a_upper_limit + zone_b_upper_limit) / 2, s='Zone A', va='center') ax.text(right_plus, (zone_a_lower_limit + zone_b_lower_limit) / 2, s='Zone A', va='center') plot_params = {'alpha': 0.3, 'zorder': -10, 'markersize': 14} if highlight_beyond_limits: beyond_limits_violations = control_beyond_limits( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(beyond_limits_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(beyond_limits_violations, 'o', color='red', label='beyond limits', **plot_params) if highlight_zone_a: zone_a_violations = control_zone_a( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_a_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_a_violations, 'o', color='orange', label='zone a violations', **plot_params) if highlight_zone_b: zone_b_violations = control_zone_b( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_b_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_b_violations, 'o', color='blue', label='zone b violations', **plot_params) if highlight_zone_c: zone_c_violations = control_zone_c( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_c_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_c_violations, 'o', color='green', label='zone c violations', **plot_params) if highlight_trend: zone_trend_violations = control_zone_trend(data=data) if len(zone_trend_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_trend_violations, 'o', color='purple', label='trend violations', **plot_params) if highlight_mixture: zone_mixture_violations = control_zone_mixture( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_mixture_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_mixture_violations, 'o', color='brown', label='mixture violations', **plot_params) if highlight_stratification: zone_stratification_violations = control_zone_stratification( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_stratification_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_stratification_violations, 'o', color='orange', label='stratification violations', **plot_params) if highlight_overcontrol: zone_overcontrol_violations = control_zone_overcontrol( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_overcontrol_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_overcontrol_violations, 'o', color='blue', label='overcontrol violations', **plot_params) ax.legend()
def ppk_plot(data: (List[int], List[float], pd.Series, np.array), upper_control_limit: (int, float), lower_control_limit: (int, float), threshold_percent: float = 0.001, ax: Axis = None): """ Shows the statistical distribution of the data along with CPK and limits. :param data: a list, pandas.Series, or numpy.array representing the data set :param upper_control_limit: an integer or float which represents the upper control limit, commonly called the UCL :param lower_control_limit: an integer or float which represents the upper control limit, commonly called the UCL :param threshold_percent: the threshold at which % of units above/below the number will display on the plot :param ax: an instance of matplotlig.axis.Axis :return: None """ data = coerce(data) mean = data.mean() std = data.std() if ax is None: fig, ax = plt.subplots() ax.hist(data, density=True, label='data', alpha=0.3) x = np.linspace(mean - 4 * std, mean + 4 * std, 100) pdf = stats.norm.pdf(x, mean, std) ax.plot(x, pdf, label='normal fit', alpha=0.7) bottom, top = ax.get_ylim() ax.axvline(mean, linestyle='--') ax.text(mean, top * 1.01, s='$\mu$', ha='center') ax.axvline(mean + std, alpha=0.6, linestyle='--') ax.text(mean + std, top * 1.01, s='$\sigma$', ha='center') ax.axvline(mean - std, alpha=0.6, linestyle='--') ax.text(mean - std, top * 1.01, s='$-\sigma$', ha='center') ax.axvline(mean + 2 * std, alpha=0.4, linestyle='--') ax.text(mean + 2 * std, top * 1.01, s='$2\sigma$', ha='center') ax.axvline(mean - 2 * std, alpha=0.4, linestyle='--') ax.text(mean - 2 * std, top * 1.01, s='-$2\sigma$', ha='center') ax.axvline(mean + 3 * std, alpha=0.2, linestyle='--') ax.text(mean + 3 * std, top * 1.01, s='$3\sigma$', ha='center') ax.axvline(mean - 3 * std, alpha=0.2, linestyle='--') ax.text(mean - 3 * std, top * 1.01, s='-$3\sigma$', ha='center') ax.fill_between(x, pdf, where=x < lower_control_limit, facecolor='red', alpha=0.5) ax.fill_between(x, pdf, where=x > upper_control_limit, facecolor='red', alpha=0.5) lower_percent = 100.0 * stats.norm.cdf(lower_control_limit, mean, std) lower_percent_text = f'{lower_percent:.02f}% < LCL' if lower_percent > threshold_percent else None higher_percent = 100.0 - 100.0 * stats.norm.cdf(upper_control_limit, mean, std) higher_percent_text = f'{higher_percent:.02f}% > UCL' if higher_percent > threshold_percent else None left, right = ax.get_xlim() bottom, top = ax.get_ylim() cpk = calc_ppk(data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) lower_sigma_level = (mean - lower_control_limit) / std if lower_sigma_level < 6.0: ax.axvline(lower_control_limit, color='red', alpha=0.25, label='limits') ax.text(lower_control_limit, top * 0.95, s=f'$-{lower_sigma_level:.01f}\sigma$', ha='center') else: ax.text(left, top * 0.95, s=f'limit > $-6\sigma$', ha='left') upper_sigma_level = (upper_control_limit - mean) / std if upper_sigma_level < 6.0: ax.axvline(upper_control_limit, color='red', alpha=0.25) ax.text(upper_control_limit, top * 0.95, s=f'${upper_sigma_level:.01f}\sigma$', ha='center') else: ax.text(right, top * 0.95, s=f'limit > $6\sigma$', ha='right') strings = [f'Ppk = {cpk:.02f}'] strings.append(f'$\mu = {mean:.3g}$') strings.append(f'$\sigma = {std:.3g}$') if lower_percent_text: strings.append(lower_percent_text) if higher_percent_text: strings.append(higher_percent_text) props = dict(boxstyle='round', facecolor='white', alpha=0.75, edgecolor='grey') ax.text(right - (right - left) * 0.05, 0.85 * top, '\n'.join(strings), bbox=props, ha='right', va='top') ax.legend(loc='lower right')