def quickPlot(filename, path, datalist, xlabel="x", ylabel="y", xrange=["auto", "auto"], yrange=["auto", "auto"], yscale="linear", xscale="linear", col=["r", "b"]): """Plots Data to .pdf File in Plots Folder Using matplotlib""" if "plots" not in os.listdir(path): os.mkdir(os.path.join(path, "plots")) coltab = col*10 seaborn.set_context("notebook", rc={"lines.linewidth": 1.0}) formatter = ScalarFormatter(useMathText=True) formatter.set_scientific(True) formatter.set_powerlimits((-2, 3)) fig = Figure(figsize=(6, 6)) ax = fig.add_subplot(111) for i, ydata in enumerate(datalist[1:]): ax.plot(datalist[0], ydata, c=coltab[i]) ax.set_title(filename) ax.set_yscale(yscale) ax.set_xscale(xscale) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if xrange[0] != "auto": ax.set_xlim(xmin=xrange[0]) if xrange[1] != "auto": ax.set_xlim(xmax=xrange[1]) if yrange[0] != "auto": ax.set_ylim(ymin=yrange[0]) if yrange[1] != "auto": ax.set_ylim(ymax=yrange[1]) if yscale == "linear": ax.yaxis.set_major_formatter(formatter) ax.xaxis.set_major_formatter(formatter) canvas = FigureCanvasPdf(fig) canvas.print_figure(os.path.join(path, "plots", filename+".pdf")) return
def backtest_plot(account_value, baseline_start=config.START_TRADE_DATE, baseline_end=config.END_DATE, baseline_ticker="^DJI", positions=None, transactions=None, value_col_name="account_value"): df = deepcopy(account_value) test_returns = get_daily_return(df, value_col_name=value_col_name) baseline_df = get_baseline(baseline_ticker, baseline_start, baseline_end) baseline_returns = get_daily_return(baseline_df, value_col_name="close") baseline_returns = baseline_returns.reindex(pd.date_range( start=test_returns.index.min(), end=test_returns.index.max()), fill_value=0) with pyfolio.plotting.plotting_context(font_scale=1.1): figs = pyfolio.create_full_tear_sheet(positions=positions, transactions=transactions, returns=test_returns, benchmark_rets=baseline_returns, set_context=False, return_figs=True) now = datetime.now().strftime(config.DATETIME_FMT) with PdfPages( f'./{config.RESULTS_DIR}/full_tear_sheet_{now}.pdf') as pages: for fig in figs: canvas = FigureCanvasPdf(fig) canvas.print_figure(pages)
def plot_2(plotdata, filename, title, use_offset=False): f = mpl.figure.Figure(figsize=(11, 8.5)) canvas = FigureCanvasPdf(f) f.suptitle(title) gs = GridSpec(len(plotdata), 1) gs.update(left=0.05, right=0.94, wspace=0.05) i = 0 offset = 0 for newdata, refdata, invert, series_no in plotdata: ax1 = f.add_subplot(gs[i, :]) ax2 = ax1.twinx() data = newdata.match.rate().data ax2.plot(data[0], data[1], color='#e0b040', linewidth=2.0, linestyle='-', marker='+', markeredgewidth=2.0) ax2max = ax2.get_ylim()[1] ax2.set_ylim([0, ax2max * 2]) ax1.set_ylabel(newdata.series1[series_no].get_name()) data = newdata.series1[series_no].data if use_offset: offset = -newdata.series1[series_no].std()*2 if invert: offset = -offset ax1.plot(refdata.data[0], refdata.data[1]+offset, linewidth=2.0, color='#9090ff') ax1.plot(data[0], data[1], color='black', linewidth=0.75) ax1.set_zorder(ax2.get_zorder()+1) # put ax in front of ax2 ax1.patch.set_visible(False) # hide the 'canvas' if invert: ax1.invert_yaxis() i = i + 1 canvas.print_figure(filename)
def make_plot(seriess, filename, title=None, invert=False): f = mpl.figure.Figure(figsize=(11, 8.5)) canvas = FigureCanvasPdf(f) if title: f.suptitle(title) gs = GridSpec(len(seriess), 1) gs.update(left=0.05, right=0.94, wspace=0.05) for i in range(0, len(seriess)): s = seriess[i] if isinstance(s, (list, tuple)): ax1 = f.add_subplot(gs[i, :]) ax2 = ax1.twinx() ax2.plot(s[1].data[0], s[1].data[1], color='#aaaaaa', linewidth=5.0) ax1.set_ylabel(s[0].get_name()) ax1.plot(s[0].data[0], s[0].data[1], color='black') ax1.set_zorder(ax2.get_zorder() + 1) # put ax in front of ax2 ax1.patch.set_visible(False) # hide the 'canvas' if invert: ax1.invert_yaxis() ax2.invert_yaxis() else: ax = f.add_subplot(gs[i, :]) ax.set_ylabel(s.get_name()) ax.plot(s.data[0], s.data[1], color='black') if invert: ax.invert_yaxis() canvas.print_figure(filename)
def plotPolygon(tri, polyPoints, nodeID, xRange, yRange): """Plots the voronoi polygon around a single node.""" fig = Figure(figsize=(4,4)) canvas = FigureCanvas(fig) fig.subplots_adjust(left=0.15, bottom=0.13,wspace=0.25, right=0.95) ax = fig.add_subplot(111, aspect='equal') ax.plot(tri.x, tri.y, '.k', ms=1) ax.plot(tri.x[nodeID], tri.y[nodeID],'.r', ms=2) # print polyPoints[nodeID] patch = matplotlib.patches.Polygon(polyPoints[nodeID], closed=True, fill=True, lw=1) ax.add_patch(patch) # ax.plot(tri.x, tri.y, '.k') ax.set_xlim(xRange) ax.set_ylim(yRange) canvas.print_figure("cell", dpi=300.)
def main(args): table = read_table(args.table) # Discard rows with any mutation within J at all logger.info('%s rows read', len(table)) if not args.ignore_J: # Discard rows with any mutation within J at all table = table[table.J_SHM == 0][:] logger.info('%s rows remain after discarding J%%SHM > 0', len(table)) if args.minimum_group_size is None: total = len(table) minimum_group_size = min(total // 1000, 100) logger.info('Skipping genes with less than %s assignments', minimum_group_size) else: minimum_group_size = args.minimum_group_size n = 0 too_few = 0 with PdfPages(args.pdf) as pages: for gene, group in table.groupby('V_gene'): if len(group) < minimum_group_size: too_few += 1 continue fig = plot_difference_histogram(group, gene) n += 1 FigureCanvasPdf(fig).print_figure(pages, bbox_inches='tight') logger.info('%s plots created (%s skipped because of too few sequences)', n, too_few)
def write_figures(prefix, directory, dose_name, dose_data, data, ec50_coeffs, feature_set, log_transform): '''Write out figure scripts for each measurement prefix - prefix for file names directory - write files into this directory dose_name - name of the dose measurement dose_data - doses per image data - data per image ec50_coeffs - coefficients calculated by calculate_ec50 feature_set - tuples of object name and feature name in same order as data log_transform - true to log-transform the dose data ''' from matplotlib.figure import Figure from matplotlib.backends.backend_pdf import FigureCanvasPdf if log_transform: dose_data = np.log(dose_data) for i, (object_name, feature_name) in enumerate(feature_set): fdata = data[:, i] fcoeffs = ec50_coeffs[i, :] filename = "%s%s_%s.pdf" % (prefix, object_name, feature_name) pathname = os.path.join(directory, filename) f = Figure() canvas = FigureCanvasPdf(f) ax = f.add_subplot(1, 1, 1) x = np.linspace(0, np.max(dose_data), num=100) y = sigmoid(fcoeffs, x) ax.plot(x, y) dose_y = sigmoid(fcoeffs, dose_data) ax.plot(dose_data, dose_y, "o") ax.set_xlabel('Dose') ax.set_ylabel('Response') ax.set_title('%s_%s' % (object_name, feature_name)) f.savefig(pathname)
def canvas(self): type = self.get("imageType", "png") fig = Figure() if type == "png": canvas = FigureCanvasAgg(fig) (self.file, self.filename) = mkstemp(".%s" % type) elif type == "svg": canvas = FigureCanvasSVG(fig) (self.file, self.filename) = mkstemp(".%s" % type) elif type == "pdf": canvas = FigureCanvasPdf(fig) (self.file, self.filename) = mkstemp(".%s" % type) elif type == "ps" or type == "eps": canvas = FigureCanvasPS(fig) (self.file, self.filename) = mkstemp(".%s" % type) else: raise "Invalid render target requested" # Set basic figure parameters dpi = float(self.get('dpi')) (w, h) = (float(self.get('width')), float(self.get('height'))) (win, hin) = (w/dpi, h/dpi) fig.set_size_inches(win, hin) fig.set_dpi(dpi) fig.set_facecolor('white') return (fig, canvas, w, h)
def output(self, file_suffix): if self.wide: left_text = self.header + '\n' + self.ts.title text_len = len(left_text.split('\n')) fontsize = self.ax.yaxis.label.get_size() linespacing = 1.2 fontrate = float(fontsize * linespacing) / 72. / 15.5 yloc = .8 - fontrate * ( text_len - 1) # this doesn't quite work. fontrate is too # small by a small amount self.fig.text(.05, yloc, left_text, linespacing=linespacing) self.fname = '_'.join([ self.prefix, self.ts.j.id, self.ts.owner, 'wide_' + file_suffix ]) elif self.header != None: title = self.header + '\n' + self.ts.title if self.threshold: title += ', V: %(v)-6.1f' % {'v': self.threshold} self.fig.suptitle(title) self.fname = '_'.join( [self.prefix, self.ts.j.id, self.ts.owner, file_suffix]) else: self.fname = '_'.join( [self.prefix, self.ts.j.id, self.ts.owner, file_suffix]) if self.mode == 'hist': self.fname += '_hist' elif self.mode == 'percentile': self.fname += '_perc' if not self.save: self.canvas = FigureCanvasAgg(self.fig) else: self.canvas = FigureCanvasPdf(self.fig) self.fig.savefig(os.path.join(self.outdir, self.fname))
def test_no_pyplot(): # tests pickle-ability of a figure not created with pyplot from matplotlib.backends.backend_pdf import FigureCanvasPdf fig = mfigure.Figure() _ = FigureCanvasPdf(fig) ax = fig.add_subplot(1, 1, 1) ax.plot([1, 2, 3], [1, 2, 3]) pickle.dump(fig, BytesIO(), pickle.HIGHEST_PROTOCOL)
def main(args): table = read_table( args.table, usecols=['V_gene', 'J_gene', 'V_SHM', 'J_SHM', 'CDR3_nt']) if not args.multi and not args.boxplot: print('Don’t know what to do', file=sys.stderr) sys.exit(2) # Discard rows with any mutation within J at all logger.info('%s rows read', len(table)) if args.max_j_shm is not None: # Discard rows with too many J mutations table = table[table.J_SHM <= args.max_j_shm][:] logger.info( '%s rows remain after keeping only those with J%%SHM <= %s', len(table), args.max_j_shm) if args.minimum_group_size is None: total = len(table) minimum_group_size = min(total // 1000, 100) logger.info('Skipping genes with less than %s assignments', minimum_group_size) else: minimum_group_size = args.minimum_group_size # Genes with high enough assignment count all_genes = table['V_gene'].unique() genes = sorted(table['V_gene'].value_counts(). loc[lambda x: x >= minimum_group_size].index) gene_set = set(genes) logger.info('%s out of %s genes have enough assignments', len(genes), len(all_genes)) if args.multi: with PdfPages(args.multi) as pages: for gene, group in table.groupby('V_gene'): if gene not in gene_set: continue fig = plot_difference_histogram(group, gene) FigureCanvasPdf(fig).print_figure(pages, bbox_inches='tight') logger.info('Wrote %r', args.multi) if args.boxplot: aspect = 1 + len(genes) / 32 g = sns.catplot(x='V_gene', y='V_SHM', kind='boxen', order=genes, data=table, height=2 * 2.54, aspect=aspect, color='g') # g.set(ylim=(-.1, None)) g.set(ylabel='% V SHM (nt)') g.set(xlabel='V gene') g.set_xticklabels(rotation=90) g.savefig(args.boxplot) logger.info('Wrote %r', args.boxplot)
def download_plot_experiment(request, exp_id, plottype="box"): exp = get_object_or_404(models.Experiment, pk=exp_id) data, ndatamax = gather_measures(exp) fig = plt.Figure() if plottype == "box": ax = fig.add_subplot(111) ax = plot.make_box_plot(ax, data) else: fig = plot.make_hist_plot(fig, data) filename = "%s.pdf" % exp.name.replace(" ", "_") canvas = FigureCanvasPdf(fig) response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename="%s"' % filename canvas.print_figure(response) return response
def PlotGraphPDF(self): ''' PDFにグラフを描画する関数 ''' from matplotlib.backends.backend_pdf import FigureCanvasPdf from matplotlib.backends.backend_pdf import PdfPages # PDFを作成するモジュールの読込 import os if self.GraphDataExist: iDir = os.getcwd() #カレントディレクトリーの読込 iFile = 'test.pdf' openFileDialog = wx.FileDialog(self, "PDFファイルの保存", iDir, iFile, "PDF files (*.pdf)|*.pdf", wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) _filename = '' openFileDialog.ShowModal() _filename = openFileDialog.GetPath() if _filename != '': # from matplotlib.figure import Figure # if event == wx.EVT_BUTTON: # print(event) # self.figure = Figure( None ) # Figure(グラフの台紙)オブジェクトを生成 self.figure.set_size_inches(298. / 25.4, 210. / 25.4, True) self.figure.set_dpi(600) self.figure.set_facecolor((0.7, 0.7, 1.0)) # Figureの表面色を設定 pdf1 = PdfPages(_filename) self.canvas = FigureCanvasPdf( self.figure) # Canvas(グラフ)オブジェクトをfigure上に生成 # Draw_Graph(self.figure) pdf1.savefig(self.figure) pdf1.close() else: print('Print Cancel') else: dlg = wx.MessageDialog(self, '作図データがありません', '警告', wx.OK | wx.ICON_WARNING) dlg.ShowModal() dlg.Destroy()
def save_as_pdf(x, y, xlim, figsize): """Create and save a PDF file from plot data. Currently, it doesn't seem possible to select landscape vs. portrait for PDF. Try _save_as_eps if that feature is important. :param x: (numpy ndarray) :param y: (numpy ndarray) :param xlim: (float, float) a tuple of (max chemical shift, min chemical shift) :param figsize: (float, float) a tuple of (plot width, plot height) in inches. """ figure = _create_figure(x, y, xlim, figsize) backend = FigureCanvasPdf(figure) filename = asksaveasfilename() if filename: if filename[-4:] != '.pdf': filename += '.pdf' backend.print_pdf(filename)
def quickPlot(filename, path, datalist, xlabel="x", ylabel="y", xrange=["auto", "auto"], yrange=["auto", "auto"], yscale="linear", xscale="linear", col=["r", "b"]): """Plots Data to .pdf File in Plots Folder Using matplotlib""" if "plots" not in os.listdir(path): os.mkdir(os.path.join(path, "plots")) coltab = col * 10 seaborn.set_context("notebook", rc={"lines.linewidth": 1.0}) formatter = ScalarFormatter(useMathText=True) formatter.set_scientific(True) formatter.set_powerlimits((-2, 3)) fig = Figure(figsize=(6, 6)) ax = fig.add_subplot(111) for i, ydata in enumerate(datalist[1:]): ax.plot(datalist[0], ydata, c=coltab[i]) ax.set_title(filename) ax.set_yscale(yscale) ax.set_xscale(xscale) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if xrange[0] != "auto": ax.set_xlim(xmin=xrange[0]) if xrange[1] != "auto": ax.set_xlim(xmax=xrange[1]) if yrange[0] != "auto": ax.set_ylim(ymin=yrange[0]) if yrange[1] != "auto": ax.set_ylim(ymax=yrange[1]) if yscale == "linear": ax.yaxis.set_major_formatter(formatter) ax.xaxis.set_major_formatter(formatter) canvas = FigureCanvasPdf(fig) canvas.print_figure(os.path.join(path, "plots", filename + ".pdf")) return
def run(): args = get_args() roofile = up.open(args.input_file) outdir = args.output_dir if not path.isdir(outdir): mkdir(outdir) for name, hist in roofile.items(): short_name = name.decode('utf-8').split(';')[0] print(f'drawing {short_name}') # set up canvas and figure fig = Figure(figsize=(5, 3)) can = FigCanvas(fig) ax = fig.add_subplot(1, 1, 1) # add a plot vals, edges = hist.numpy centers = (edges[:-1] + edges[1:]) / 2 ax.plot(centers, vals) ax.set_yscale('log') can.print_figure(f'{outdir}/{short_name}.pdf')
def finalize(self, key): logi = self.instances.pop(key) from matplotlib.figure import Figure from matplotlib.backends.backend_pdf import FigureCanvasPdf fig = Figure(figsize=(6, 8)) fig.suptitle("%s - order:%d" % (key)) logi.render(fig) FigureCanvasPdf(fig) self.pdf.savefig(figure=fig)
def plot_flattend_a0v(spec_flattener, w, s_orig, of_list, data_list, fout=None): print "Now generating figures" from matplotlib.backends.backend_pdf import Figure, FigureCanvasPdf fig = Figure() FigureCanvasPdf(fig) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212, sharex=ax1) # data_list = [("flattened_spec", s_orig/continuum_array), # ("wavelength", w), # ("fitted_continuum", continuum_array), # ("mask", mask_array), # ("a0v_norm", a0v_array), # ("model_teltrans", teltrans_array), # ] s_a0v = data_list[4][1] tt_list = data_list[5][1] msk_list = data_list[3][1] cont_list = data_list[2][1] _interim_result = zip(w, s_orig, of_list, s_a0v, tt_list, msk_list, cont_list) for w1, s1_orig, of, s1_a0v, tt1, msk, cont in _interim_result: spec_flattener.plot_fitted(w1, s1_orig, s1_a0v, tt1, msk, msk, cont, ax1=ax1, ax2=ax2) ax2.set_ylim(-0.1, 1.2) ax2.axhline(1.0, color="0.8") ax2.set_xlabel(r"Wavelength [$\mu$m]") ax2.set_ylabel(r"Flattened Spectra") ax1.set_ylabel(r"Spectra w/o Blaze function correction") from matplotlib.backends.backend_pdf import PdfPages if fout is None: fout = 'multipage_pdf.pdf' with PdfPages(fout) as pdf: w = np.array(w) wmin, wmax = w.min(), w.max() ymax = np.nanmax(s_orig) ax1.set_xlim(wmin, wmax) ax1.set_ylim(-0.1*ymax, 1.1*ymax) pdf.savefig(figure=fig) for w1, s1_orig, of, s1_a0v, tt1, msk, cont in _interim_result: ax1.set_xlim(min(w1), max(w1)) pdf.savefig(figure=fig)
def print_pdf(self, filename, **kwargs): transparent = kwargs.pop('transparent', rcParams['savefig.transparent']) if transparent: kwargs.setdefault('facecolor', 'none') kwargs.setdefault('edgecolor', 'none') original_axes_colors = [] for ax in self.figure.axes: patch = ax.patch original_axes_colors.append( (patch.get_facecolor(), patch.get_edgecolor())) patch.set_facecolor('none') patch.set_edgecolor('none') else: kwargs.setdefault('facecolor', rcParams['savefig.facecolor']) kwargs.setdefault('edgecolor', rcParams['savefig.edgecolor']) if 'rv' in THEME: self.reverse() FigureCanvasPdf.print_pdf(self, filename, **kwargs)
def makePDF(self, **params): from matplotlib.backends.backend_pdf import PdfPages #from pylab import * # Create the PdfPages object to which we will save the pages: imdata = StringIO() # should write to string buffer pdf = PdfPages(os.path.join( self.workDir, 'figures.pdf')) #imdata) #'multipage_pdf.pdf') fig = self.heatmap() FigureCanvasPdf(fig) # this constructor sets the figures canvas... pdf.savefig(fig) fig = self.histogram() FigureCanvasPdf(fig) # this constructor sets the figures canvas... pdf.savefig(fig) # here's another way - or you could do pdf.savefig(1) fig = self.plot() FigureCanvasPdf(fig) # this constructor sets the figures canvas... pdf.savefig(fig) # or you can pass a Figure object to pdf.savefig fig = self.duration() FigureCanvasPdf(fig) # this constructor sets the figures canvas... pdf.savefig(fig) # or you can pass a Figure object to pdf.savefig # We can also set the file's metadata via the PdfPages object: d = pdf.infodict() d['Title'] = 'Energy Fingerprint Report' d['Author'] = 'LBNL Energy Fingerprint Server' d['Subject'] = 'Visual summary of energy data with suggestions' d['Keywords'] = 'Green Button, Energy data, Fingerprint, LBNL' d['CreationDate'] = datetime.datetime.today() d['ModDate'] = datetime.datetime.today() # Remember to close the object - otherwise the file will not be usable pdf.close()
def EraseGraphWindow(self, panel1=wx.Panel): ''' Windowのpanelのグラフを消去する関数 ''' # print(self.radiobutton_1.GetValue()) from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg from matplotlib.figure import Figure self.figure = Figure(None) # Figure(グラフの台紙)オブジェクトを生成 self.figure.set_facecolor((1.0, 1.0, 1.0)) # Figureの表面色を設定 #panel2にFigureを貼り付けcanvasを生成 self.canvas = FigureCanvasWxAgg(panel1, -1, self.figure) self.canvas.SetSize(tuple( panel1.GetClientSize())) # canvasのサイズをpanel2に合わせる。 self.GraphDataExist = False
def main(args): logger.info('Will plot results to %s', args.pdf) cdr3_column = 'CDR3_nt' if args.nt else 'CDR3_aa' n_datasets = len(args.tables) if args.names: names = args.names.split(',') if len(names) != n_datasets: logger.error('%s dataset names given, but %s datasets provided', len(names), n_datasets) sys.exit(1) else: names = list(range(n_datasets)) datasets = (read_dataset(path, limit=args.limit, minsize=args.minsize) for path in args.tables) df = pd.concat(datasets, keys=range(n_datasets), names=['dataset_id']) logger.info('Read %s tables', n_datasets) df.rename(columns=lambda x: x[:-4], inplace=True) # Removes _SHM suffix cols = ['V_gene', 'J_gene', cdr3_column] n = 0 with PdfPages(args.pdf) as pages: for (v_gene, j_gene, cdr3), group in df.groupby(level=cols): group = group.reset_index(level=cols, drop=True) skip = False counter = Counter(group.index) for dataset_id in range(n_datasets): if counter[dataset_id] < args.minsize: skip = True break if skip: continue table = group.stack() table.index.set_names('region', level=1, inplace=True) table.name = 'SHM' table = table.reset_index() table = table.assign(Dataset=table['dataset_id'].map(lambda i: names[i])) g = sns.factorplot(data=table, x='region', y='SHM', hue='Dataset', kind='violin', size=16*CM, aspect=2) dscounts = ' vs '.join(str(counter[i]) for i in range(n_datasets)) g.fig.suptitle('V: {} – J: {} – CDR3: {} ({})'.format(v_gene, j_gene, cdr3, dscounts)) g.set_axis_labels('Region') g.set_ylabels('%SHM') # g.despine() FigureCanvasPdf(g.fig).print_figure(pages, bbox_inches='tight') n += 1 logger.info('Plotted %s clonotypes', n)
def plot(self, gridspec=None, figsize=(11, 8.5), filetype="pdf"): if gridspec is None: gridspec = dict(left=0.05, right=0.94, wspace=0.05) nplots = len(self.plotspecs) fig = mpl.figure.Figure(figsize=figsize) if filetype.lower() == "pdf": FigureCanvasPdf(fig) elif filetype.lower() == "svg": FigureCanvasSVG(fig) else: raise ValueError("Unknown filetype: %s" % filetype) if self.title: fig.suptitle(self.title) gs = GridSpec(nplots, 1) gs.update(**gridspec) for i in xrange(0, nplots): self.plotspecs[i].plot(fig, gs, i) fig.set_size_inches(figsize) fig.savefig(self.filename + "." + filetype, format=filetype.lower(), facecolor="none")
def draw(self, path=None, show=True): self.main_drawing_flow(self.figure) if path is None: handle, path = tempfile.mkstemp(prefix="tmp_solcore_", suffix=".%s" % self.options["format"]) if self.options["format"].upper() == "PDF": self.canvas = FigureCanvasPdf(self.figure) else: self.canvas = FigureCanvasAgg(self.figure) self.canvas.print_figure(path, dpi=self.options["dpi"], bbox_extra_artists=self.extra_artists, bbox_inches='tight') if show and not self.suppress_show: open_with_os(path)
def PlotGraphWindow(self, panel1=wx.Panel, n1=2, m1=2, data=None, Freq=1000.0, SampleN=1000): ''' Windowのpanelにグラフを描画する関数 ''' # if self.GraphDataExist: # self.EraseGraphWindow(panel1) # print(self.radiobutton_1.GetValue()) # from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg # from matplotlib.figure import Figure # self.figure = Figure( None ) # Figure(グラフの台紙)オブジェクトを生成 self.figure.clf(keep_observers=False) self.figure.set_facecolor((0.8, 0.8, 0.8)) # Figureの表面色を設定 #panel2にFigureを貼り付けcanvasを生成 self.canvas = FigureCanvasWxAgg(panel1, -1, self.figure) self.canvas.SetSize(tuple( self.Graph_panel.GetClientSize())) # canvasのサイズをpanel2に合わせる。 # print(self.canvas.Size,self.canvas.Position) self.canvas.SetBackgroundColour(wx.Colour( 100, 0, 255)) # Canvasの背景色を設定(これは不要?) self.n = n1 self.m = m1 # self.MakeWaveData(self.n * self.m) # self.MakeWaveData(7) self.y = data[:, :, int(self.microDAQ_GraphUnitNo.Value) - 1] self.x = np.arange(SampleN) / Freq Draw_Graph(self.figure, self.n, self.m, self.x, self.y) self.GraphDataExist = True
def plot(self, gridspec=None, figsize=(11, 8.5), filetype="pdf"): if gridspec is None: gridspec = dict(left=0.05, right=0.94, wspace=0.05) nplots = len(self.plotspecs) fig = mpl.figure.Figure(figsize=figsize) # We have to create a canvas in order to be able to save the figure, # even if we don't assign the object to anything. # FigureCanvasBase.__init__ calls figure.set_canvas for us. if filetype.lower() == "pdf": FigureCanvasPdf(fig) elif filetype.lower() == "svg": FigureCanvasSVG(fig) else: raise ValueError("Unknown filetype: %s" % filetype) if self.title: fig.suptitle(self.title) gs = GridSpec(nplots, 1) gs.update(**gridspec) for i in xrange(0, nplots): self.plotspecs[i].plot(fig, gs, i) fig.set_size_inches(figsize) fig.savefig(self.filename + "." + filetype, format=filetype.lower(), facecolor="none")
fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) # plot bars bar1 = ax.bar(ind, p2p, width, color='r') bar2 = ax.bar(ind+width, m2l, width, color='b') rc('font',**font) # axis labels ax.set_ylabel('Time (s)', fontsize=10) ax.set_xlabel('Iteration', fontsize=10) xticks(arange(min(ind), max(ind)+1, 5.0)) # ax.set_xticklabels( ('8192','32768','131072') ) ax.legend( (bar1[0], bar2[0]), ('P2P', 'M2L'), loc=1 ) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('StokesSolveBreakdown.pdf',dpi=80) # text on scaling plot #fig = Figure(figsize=(3,2), dpi=80) #ax = fig.add_subplot(111) #asymp = N*log(N)*total_time[0]/(N[0]*log(N[0])) #ax.loglog(N, total_time, c='k', marker='o',ls=' ', mfc='w', ms=5, label='') #ax.loglog(N, asymp,c='k',marker='None',ls=':', lw=0.8, label=None) #loc = (3*N[0]+N[1])/4 #tex_loc = array((loc, loc*log(loc)*total_time[0]/(N[0]*log(N[0])))) #tex_angle = math.atan2(log(abs(asymp[-1]-asymp[0])),log(abs(N[-1]-N[0])))*180/math.pi #ax.text(tex_loc[0], tex_loc[1], 'NlogN', fontsize=8,rotation=tex_angle, rotation_mode='anchor') #rc('font',**font)
def pdfData(self,fig): canvas=FigureCanvasPdf(fig) imdata=StringIO() canvas.print_pdf(imdata) return imdata.getvalue()
N_8cells = array([16384, 65536]) it_8cells = array([61, 66]) # set up plot font = {'family':'serif','size':10} fig = Figure(figsize=(7,4), dpi=80) ax = fig.add_subplot(111) # plot log-log bar1 = ax.semilogx(N_2048,cells_2048,c='k',marker='o', ls='-', mfc='w', ms=5, label='') bar2 = ax.semilogx(N_8192,cells_8192,c='k',marker='o', ls=':', mfc='w', ms=5, label='') bar3 = ax.semilogx(N_32768,cells_32768,c='k',marker='o', ls='-.', mfc='w', ms=5, label='') bar4 = ax.semilogx(N_2cells,it_2cells,c='r',marker='o', ls='-', mfc='w', ms=5, label='') bar5 = ax.semilogx(N_4cells,it_4cells,c='r',marker='o', ls=':', mfc='w', ms=5, label='') bar6 = ax.semilogx(N_8cells,it_8cells,c='r',marker='o', ls='-.', mfc='w', ms=5, label='') rc('font',**font) # axis labels ax.set_ylabel('Iterations', fontsize=10) ax.set_xlabel('N', fontsize=10) ax.legend( (bar1[0],bar2[0],bar3[0],bar4[0],bar5[0],bar6[0]), ('2048 per cell','8192 per cell','32768 per cell','2 cells','4 cells','8cells'),loc=2) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('EthrocyteMultipleCellIterations.pdf',dpi=80)
def save_annotated(self, fname=None, label_fmt=None, text_annotate=None, dpi=100, sigma_clip=None): r"""Saves the most recently rendered image of the Scene to disk, including an image of the transfer function and and user-defined text. Once you have created a scene and rendered that scene to an image array, this saves that image array to disk with an optional filename. If an image has not yet been rendered for the current scene object, it forces one and writes it out. Parameters ---------- fname: string, optional If specified, save the rendering as a bitmap to the file "fname". If unspecified, it creates a default based on the dataset filename. Default: None sigma_clip: float, optional Image values greater than this number times the standard deviation plus the mean of the image will be clipped before saving. Useful for enhancing images as it gets rid of rare high pixel values. Default: None floor(vals > std_dev*sigma_clip + mean) dpi: integer, optional By default, the resulting image will be the same size as the camera parameters. If you supply a dpi, then the image will be scaled accordingly (from the default 100 dpi) label_fmt : str, optional A format specifier (e.g., label_fmt="%.2g") to use in formatting the data values that label the transfer function colorbar. text_annotate : list of iterables Any text that you wish to display on the image. This should be an list containing a tuple of coordinates (in normalized figure coordinates), the text to display, and, optionally, a dictionary of keyword/value pairs to pass through to the matplotlib text() function. Each item in the main list is a separate string to write. Returns ------- Nothing Examples -------- >>> sc.save_annotated("fig.png", ... text_annotate=[[(0.05, 0.05), ... "t = {}".format(ds.current_time.d), ... dict(horizontalalignment="left")], ... [(0.5,0.95), ... "simulation title", ... dict(color="y", fontsize="24", ... horizontalalignment="center")]]) """ from yt.visualization._mpl_imports import \ FigureCanvasAgg, FigureCanvasPdf, FigureCanvasPS sources = list(itervalues(self.sources)) rensources = [s for s in sources if isinstance(s, RenderSource)] if fname is None: # if a volume source present, use its affiliated ds for fname if len(rensources) > 0: rs = rensources[0] basename = rs.data_source.ds.basename if isinstance(rs.field, string_types): field = rs.field else: field = rs.field[-1] fname = "%s_Render_%s.png" % (basename, field) # if no volume source present, use a default filename else: fname = "Render_opaque.png" suffix = get_image_suffix(fname) if suffix == '': suffix = '.png' fname = '%s%s' % (fname, suffix) self.render() # which transfer function? rs = rensources[0] tf = rs.transfer_function label = rs.data_source.ds._get_field_info(rs.field).get_label() ax = self._show_mpl(self._last_render.swapaxes(0, 1), sigma_clip=sigma_clip, dpi=dpi) self._annotate(ax.axes, tf, rs, label=label, label_fmt=label_fmt) # any text? if text_annotate is not None: f = self._render_figure for t in text_annotate: xy = t[0] string = t[1] if len(t) == 3: opt = t[2] else: opt = dict() # sane default if "color" not in opt: opt["color"] = "w" ax.axes.text(xy[0], xy[1], string, transform=f.transFigure, **opt) suffix = get_image_suffix(fname) if suffix == ".png": canvas = FigureCanvasAgg(self._render_figure) elif suffix == ".pdf": canvas = FigureCanvasPdf(self._render_figure) elif suffix in (".eps", ".ps"): canvas = FigureCanvasPS(self._render_figure) else: mylog.warning("Unknown suffix %s, defaulting to Agg", suffix) canvas = self.canvas self._render_figure.canvas = canvas self._render_figure.tight_layout() self._render_figure.savefig(fname, facecolor='black', pad_inches=0)
hatch='..' * 2, linewidth=1) bar2 = ax.bar(ind + width, s_8192, width, fill=False, edgecolor='k', hatch='//' * 2, linewidth=1) bar3 = ax.bar(ind + 2 * width, s_32768, width, fill=False, edgecolor='k', hatch='x' * 3, linewidth=1) # axis labels ax.set_ylabel('Speedup', fontsize=10) ax.set_xlabel('N', fontsize=10) ax.set_xticks(ind + 1.5 * width) ax.set_xticklabels(('2048', '8192', '32768', '131072')) ax.legend((bar1[0], bar2[0], bar3[0]), ('2048 panels/cell', '8192 panels/cell', '32768 panels/cell'), loc=2, fontsize='small') fig.subplots_adjust(left=0.195, bottom=0.21, right=0.955, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('EthrocyteMultipleCellSpeedup.pdf', dpi=80)
font = {'family':'serif','size':10} fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) asymp = N[0]*error[0]/N ax.loglog(N, error, c='k', marker='o',ls=' ', mfc='w', ms=5, label='') ax.loglog(N, asymp, c='k', marker='None', ls=':', lw=0.8, label=None) rc('font',**font) loc = (3*N[0]+N[1])/4 tex_loc = array((loc,N[0]*error[0]/loc)) tex_angle = math.atan2(log(abs(asymp[-1]-asymp[0])),log(abs(N[-1]-N[0])))*180/math.pi ax.text(tex_loc[0], tex_loc[1],r'N$^{-1}$',fontsize=8,rotation=tex_angle,rotation_mode='anchor') ax.set_ylabel('Relative error', fontsize=10) ax.set_xlabel('Number of elements', fontsize=10) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) canvas.print_figure('regression_tests/figs/error_energy_molecule_neumann.pdf',dpi=80) fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) asymp = N*log(N)*total_time[0]/(N[0]*log(N[0])) ax.loglog(N, total_time, c='k', marker='o',ls=' ', mfc='w', ms=5, label='') ax.loglog(N, asymp,c='k',marker='None',ls=':', lw=0.8, label=None) loc = (3*N[0]+N[1])/4 tex_loc = array((loc, loc*log(loc)*total_time[0]/(N[0]*log(N[0])))) tex_angle = math.atan2(log(abs(asymp[-1]-asymp[0])),log(abs(N[-1]-N[0])))*180/math.pi ax.text(tex_loc[0], tex_loc[1], 'NlogN', fontsize=8,rotation=tex_angle, rotation_mode='anchor') rc('font',**font) ax.set_ylabel('Total time [s]', fontsize=10) ax.set_xlabel('Number of elements', fontsize=10) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95)
# set up data N = 5 t_relax = numpy.array([3.9448, 6.1992, 9.0813, 12.696, 22.055]) t_fixed = numpy.array([7.5261, 12.376, 19.960, 25.412, 37.766]) speedup = t_fixed / t_relax ind = numpy.arange(N, dtype=int) width = 0.35 # set up plot font = {'family':'serif','size':10} fig = pyplot.figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) print(t_relax,t_fixed) print(speedup) # plot log-log bar1 = ax.bar(ind, t_fixed, width, fill=False, edgecolor='k', hatch='..'*2, linewidth=1) bar2 = ax.bar(ind+width, t_relax, width, fill=False, edgecolor='k', hatch='/'*4, linewidth=1) # axis labels ax.set_ylabel('Time (s)', fontsize=10) ax.set_xlabel('p', fontsize=10) ax.set_xticks(ind+width) ax.set_xticklabels( ('5','8','10','12','15') ) fig.subplots_adjust(left=0.195, bottom=0.21, right=0.955, top=0.95) ax.legend( (bar1[0], bar2[0]), ('fixed p', 'Relaxed'), loc=2, fontsize='small' ) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('LaplaceRelaxationP.pdf',dpi=80)
ms=5, label='non-relaxed, loose parameters') ax1.loglog(N[-3:], e1_relaxed, c='k', ls='-', lw=0.5, marker='x', ms=5, label='relaxed, loose parameters') ax1.set_xlabel('$N$', fontsize=10) ax1.set_ylabel('Relative Error') ax1.legend(loc=1, fontsize=6.5) ax1.grid('on') ax1.set_title('1st-kind', fontsize=10) # right plot: 2nd-kind ax2 = fig.add_subplot(122) ax2.loglog(N, e2, c='k', ls='-', lw=1.0, marker='o', mfc='w', ms=5, label='non-relaxed, tight parameters') ax2.loglog(N[-3:], e2_fixed, c='k', ls='-', lw=0.5, marker='+', ms=5, label='non-relaxed, loose parameters') ax2.loglog(N[-3:], e2_relaxed, c='k', ls='-', lw=0.5, marker='x', ms=5, label='relaxed, loose parameters') ax2.set_xlabel('$N$', fontsize=10) ax2.legend(loc=1, fontsize=6.5) ax2.set_yticklabels([]) ax2.grid('on') ax2.set_title('2nd-kind', fontsize=10) fig.subplots_adjust(left=0.15, bottom=0.15, right=0.87, top=0.92) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('LaplaceConvergence.pdf',dpi=80)
font = {'family':'serif','size':10} fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) asymp = N[0]*error[0]/N ax.loglog(N, error, c='k', marker='o',ls=' ', mfc='w', ms=5, label='') ax.loglog(N, asymp, c='k', marker='None', ls=':', lw=0.8, label=None) rc('font',**font) loc = (3*N[0]+N[1])/4 tex_loc = array((loc,N[0]*error[0]/loc)) tex_angle = math.atan2(log(abs(asymp[-1]-asymp[0])),log(abs(N[-1]-N[0])))*180/math.pi ax.text(tex_loc[0], tex_loc[1],r'N$^{-1}$',fontsize=8,rotation=tex_angle,rotation_mode='anchor') ax.set_ylabel('Relative error', fontsize=10) ax.set_xlabel('Number of elements', fontsize=10) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) canvas.print_figure('regression_tests/figs/error_energy_twosphere_dirichlet.pdf',dpi=80) fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) asymp = N*log(N)*total_time[0]/(N[0]*log(N[0])) ax.loglog(N, total_time, c='k', marker='o',ls=' ', mfc='w', ms=5, label='') ax.loglog(N, asymp,c='k',marker='None',ls=':', lw=0.8, label=None) loc = (3*N[0]+N[1])/4 tex_loc = array((loc, loc*log(loc)*total_time[0]/(N[0]*log(N[0])))) tex_angle = math.atan2(log(abs(asymp[-1]-asymp[0])),log(abs(N[-1]-N[0])))*180/math.pi ax.text(tex_loc[0], tex_loc[1], 'NlogN', fontsize=8,rotation=tex_angle, rotation_mode='anchor') rc('font',**font) ax.set_ylabel('Total time [s]', fontsize=10) ax.set_xlabel('Number of elements', fontsize=10) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95)
1.770e-05, 1.462e-05, 1.367e-05, 1.137e-05, 1.054e-05, 9.2166e-06]) r2 = array([1.985e-03, 4.820e-04, 3.696e-04, 2.394e-04, 1.812e-04, 1.708e-04, 1.423e-04, 1.366e-04, 1.242e-04, 1.111e-04, 9.853e-05, 8.041e-05, 6.692e-05, 5.988e-05, 4.896e-05, 4.433e-05, 3.768e-05, 3.500e-05, 2.768e-05, 2.620e-05, 2.231e-05, 1.997e-05, 1.744e-05, 1.623e-05, 1.419e-05, 1.245e-05, 1.006e-05, 8.2839e-06]) it1 = arange(size(r)) it2 = arange(size(r2)) # set up plot font = {'family':'serif','size':10} fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) # plot log-log line1 = ax.semilogy(it1,r,c='k',marker='', ls='-', mfc='w', ms=5, label='Fixed p') line2 = ax.semilogy(it2,r2,c='k',marker='', ls=':', mfc='w', ms=5, label='Relaxed') rc('font',**font) # axis labels ax.set_ylabel('Residual', fontsize=10) ax.set_xlabel('Iteration', fontsize=10) ax.legend( (line1, line2), ('Fixed p', 'Relaxed') ) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('StokesResidualHistory.pdf',dpi=80)
# make an average for each case time = numpy.mean(numpy.array(temp).reshape(-1,3), axis=1) # calculate speedup speedup = time[::2] / time[1::2] print("Speedup: ", speedup) print("fixed-p: ", time[::2]) print("relaxed-p: ", time[1::2]) ind = numpy.arange(len(speedup)) width = 0.3 # set up plot fig = pyplot.figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) # plot bar = ax.bar(ind+0.1, speedup, width, fill=False, edgecolor='k', hatch='..'*2, linewidth=1) # axis labels ax.set_xticks(ind+0.1+width/2) ax.set_xlim(-0.4, 3) ax.set_ylim(0, numpy.ceil(numpy.max(speedup))) ax.set_xticklabels( ('8192','32768','131072') ) ax.set_ylabel('Speedup', fontsize=10) ax.set_xlabel('N', fontsize=10) fig.subplots_adjust(left=0.195, bottom=0.21, right=0.955, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('StokesSpeedupRelaxation.pdf',dpi=80)
def store_2ddata(data, fname, pltitle='', dir='./', fits=False, plot=True, plrange=(None, None), log=False, rollaxes=False, cmap='RdYlBu', xlab='X [pix]', ylab='Y [pix]', cbarlab=None, hdr=(), ident=True): """ Store **data** to disk as FITS and/or plot as annotated plot in PDF. @param [in] data 2D data array to show @param [in] fname Filename base to use (also fallback for plot title) @param [in] pltitle Plot title (if given) @param [in] dir Output directory @param [in] fits Toggle FITS output @param [in] plot Toggle 2D plot output as PDF @param [in] plrange Use this range for plotting in imshow() (None for autoscale) @param [in] log Take logarithm of data before storing. @param [in] rollaxes Roll axes for PDF plot such that (0,0) is the center @param [in] cmap Colormap to use for PDF @param [in] xlab X-axis label @param [in] ylab Y-axis label @param [in] cbarlab Colorbar label (for units) @param [in] hdr Additional FITS header items, give a list of tuples: [(key1, val1), (key2, val2)] @param [in] ident Add identification string to plots @returns Tuple of (fitsfile path, plotfile path) """ # Do not store empty data if (len(data) <= 0): return data_arr = np.asanyarray(data) if (log): data_arr = np.log10(data_arr) extent = None if (rollaxes): sh = data_arr.shape extent = (-sh[1]/2., sh[1]/2., -sh[0]/2., sh[0]/2.) # Check if dir exists, or create if (not os.path.isdir(dir)): os.makedirs(dir) fitsfile = filenamify(fname)+'.fits' fitspath = os.path.join(dir, fitsfile) plotfile = filenamify(fname)+'.pdf' plotpath = os.path.join(dir, plotfile) if (fits): # Generate some metadata. Also store plot settings here hdr_dict = dict({'filename':fitsfile, 'desc':fname, 'title':pltitle, 'plxlab': xlab, 'plylab': ylab, 'pllog': log, 'plrlxs': rollaxes, 'plcmap': cmap, 'plrng0': plrange[0] if plrange[0] else 0, 'plrng1': plrange[1] if plrange[1] else 0, }.items() + dict(hdr).items()) hdr = mkfitshdr(hdr_dict) # Store data to disk pyfits.writeto(fitspath, data_arr, header=hdr, clobber=True, checksum=True) if (plot): #plot_from_fits(fitspath) pltit = fname if (pltitle): pltit = pltitle # Plot without GUI, using matplotlib internals fig = Figure(figsize=(6,6)) ax = fig.add_subplot(111) # Make margin smaller fig.subplots_adjust(left=0.15, right=0.95, top=0.9, bottom=0.1) img=0 # Colormaps # plus min: cmap=cm.get_cmap('RdYlBu') # linear: cmap=cm.get_cmap('YlOrBr') # gray: cmap=cm.get_cmap('gray') img = ax.imshow(data_arr, interpolation='nearest', cmap=cm.get_cmap(cmap), aspect='equal', extent=extent, vmin=plrange[0], vmax=plrange[1]) ax.set_title(pltit) ax.set_xlabel(xlab) ax.set_ylabel(ylab) # dimension 0 is height, dimension 1 is width # When the width is equal or more than the height, use a horizontal bar, otherwise use vertical if (data_arr.shape[0]/data_arr.shape[1] >= 1.0): cbar = fig.colorbar(img, orientation='vertical', aspect=30, pad=0.05, shrink=0.8) else: cbar = fig.colorbar(img, orientation='horizontal', aspect=30, pad=0.12, shrink=0.8) if (cbarlab): cbar.set_label(cbarlab) # Add ID string if (ident): # Make ID string datestr = datetime.datetime.utcnow().isoformat()+'Z' # Put this in try-except because os.getlogin() fails in screen(1) try: idstr = "%s@%s %s %s" % (os.getlogin(), os.uname()[1], datestr, sys.argv[0]) except OSError: idstr = "%s@%s %s %s" % (getpass.getuser(), os.uname()[1], datestr, sys.argv[0]) ax.text(0.01, 0.01, idstr, fontsize=7, transform=fig.transFigure) canvas = FigureCanvas(fig) #canvas.print_figure(plotfile, bbox_inches='tight') canvas.print_figure(plotpath) return (fitspath, plotpath)
t_relax = numpy.array([1.6450, 2.3425, 4.0652, 5.7684, 8.1425, 1.0105e+01, 1.2244e+01]) t_fixed = numpy.array([3.1261, 4.7109, 7.9344, 9.8651, 1.2510e+01, 1.6292e+01, 1.7878e+01]) speedup = t_fixed / t_relax print(t_relax, t_fixed) print(speedup) # set up plot fig = pyplot.figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) # plot log-log ax.plot(tol,speedup,c='k',marker='o', ls='-', mfc='w', ms=5, label='') # axis labels #pyplot.xlim(5, 50) #pyplot.ylim(1, 4) ax.set_ylabel('Speedup', fontsize=10) ax.set_xlabel('tolerance', fontsize=10) ax.set_xscale('log') pyplot.axhline(y=1.0, linestyle='dashed', color='k') pyplot.ylim(0,2.5) fig.subplots_adjust(left=0.195, bottom=0.21, right=0.955, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('LaplaceSpeedupTolerance.pdf',dpi=80)
xbar = ybar = 0.0 colors = ['#377eb8', '#ff7f00', '#4daf4a'] for th, c in zip(thetas, colors): beta = 2*th # shear phase ax1.arrow(0.0, 0.0, length*np.cos(th), length*np.sin(th), width=0.02, head_width=0.02, length_includes_head=True, color=c) ax1.arrow(0.0, 0.0, -length*np.cos(th), -length*np.sin(th), width=0.02, head_width=0.02, length_includes_head=True, color=c) ax2.arrow(0.0, 0.0, length*np.cos(beta), length*np.sin(beta), width=0.02, head_width=0.1, length_includes_head=True, color=c) xbar += np.cos(beta) ybar += np.sin(beta) xbar /= len(thetas) ybar /= len(thetas) ax2.arrow(0.0, 0.0, length*xbar, length*ybar, width=0.02, head_width=0.1, color='k') for ax in [ax1, ax2]: ax.set_xlim(-1.2, 1.2) ax.set_ylim(-1.2, 1.2) ax.axhline(0.0, c='k', lw=0.5) ax.axvline(0.0, c='k', lw=0.5) ax.set_xticks([]) ax.set_yticks([]) ax.add_patch(Ellipse((0.0, 0.0), 2*length, 2*length, fill=False, ec='k')) ax1.set_title("Headless position angles") ax2.set_title("Shear phases") canvas = FigureCanvasPdf(fig) fig.set_tight_layout(True) canvas.print_figure("angularSpread.pdf", dpi=100)
# plot log-log ax.loglog(N, e, c='k', ls='-', lw=1.0, marker='o', mfc='w', ms=5, label='non-relaxed, tight parameters') ax.loglog(N[1:], e_fixed, c='k', ls='-', lw=0.5, marker='+', ms=5, label='non-relaxed, loose parameters') ax.loglog(N[1:], e_relaxed, c='k', ls='-', lw=0.5, marker='x', ms=5, label='relaxed, loose parameters') # referece line ax.loglog(N, line_sqrtN, c='k',ls='--') # text on plot scale2 = 0.6 # for plot adjustment loc = (3*N[0]+N[1])/4 tex_loc = numpy.array((loc, N[0]*e[0]/loc)) * scale2 tex_angle = - 23 ax.text(tex_loc[0], tex_loc[1]/3.5, r'$O(1/\sqrt{N})$', fontsize=8, rotation=tex_angle, rotation_mode='anchor') # axis labels ax.set_ylabel('Relative Error', fontsize=10) ax.set_xlabel('N', fontsize=10) ax.set_ylim(5e-4, 1e0) ax.legend(loc=3, fontsize=6) fig.subplots_adjust(left=0.195, bottom=0.21, right=0.955, top=0.92) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('EthrocyteConvergence.pdf',dpi=80)
font = {'family':'serif','size':10} fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) asymp = N[0]*error[0]/N ax.loglog(N, error, c='k', marker='o',ls=' ', mfc='w', ms=5, label='') ax.loglog(N, asymp, c='k', marker='None', ls=':', lw=0.8, label=None) rc('font',**font) loc = (3*N[0]+N[1])/4 tex_loc = array((loc,N[0]*error[0]/loc)) tex_angle = math.atan2(log(abs(asymp[-1]-asymp[0])),log(abs(N[-1]-N[0])))*180/math.pi ax.text(tex_loc[0], tex_loc[1],r'N$^{-1}$',fontsize=8,rotation=tex_angle,rotation_mode='anchor') ax.set_ylabel('Relative error', fontsize=10) ax.set_xlabel('Number of elements', fontsize=10) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) canvas.print_figure('regression_tests/figs/error_energy_dirichlet_surface.pdf',dpi=80) fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) asymp = N*log(N)*total_time[0]/(N[0]*log(N[0])) ax.loglog(N, total_time, c='k', marker='o',ls=' ', mfc='w', ms=5, label='') ax.loglog(N, asymp,c='k',marker='None',ls=':', lw=0.8, label=None) loc = (3*N[0]+N[1])/4 tex_loc = array((loc, loc*log(loc)*total_time[0]/(N[0]*log(N[0])))) tex_angle = math.atan2(log(abs(asymp[-1]-asymp[0])),log(abs(N[-1]-N[0])))*180/math.pi ax.text(tex_loc[0], tex_loc[1], 'NlogN', fontsize=8,rotation=tex_angle, rotation_mode='anchor') rc('font',**font) ax.set_ylabel('Total time [s]', fontsize=10) ax.set_xlabel('Number of elements', fontsize=10) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95)
font = {'family':'serif','size':10} fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) asymp = N[0]*error[0]/N ax.loglog(N, error, c='k', marker='o',ls=' ', mfc='w', ms=5, label='') ax.loglog(N, asymp, c='k', marker='None', ls=':', lw=0.8, label=None) rc('font',**font) loc = (3*N[0]+N[1])/4 tex_loc = array((loc,N[0]*error[0]/loc)) tex_angle = math.atan2(log(abs(asymp[-1]-asymp[0])),log(abs(N[-1]-N[0])))*180/math.pi ax.text(tex_loc[0], tex_loc[1],r'N$^{-1}$',fontsize=8,rotation=tex_angle,rotation_mode='anchor') ax.set_ylabel('Relative error', fontsize=10) ax.set_xlabel('Number of elements', fontsize=10) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) canvas.print_figure('regression_tests/figs/error_energy_neumann_surface.pdf',dpi=80) fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) asymp = N*log(N)*total_time[0]/(N[0]*log(N[0])) ax.loglog(N, total_time, c='k', marker='o',ls=' ', mfc='w', ms=5, label='') ax.loglog(N, asymp,c='k',marker='None',ls=':', lw=0.8, label=None) loc = (3*N[0]+N[1])/4 tex_loc = array((loc, loc*log(loc)*total_time[0]/(N[0]*log(N[0])))) tex_angle = math.atan2(log(abs(asymp[-1]-asymp[0])),log(abs(N[-1]-N[0])))*180/math.pi ax.text(tex_loc[0], tex_loc[1], 'NlogN', fontsize=8,rotation=tex_angle, rotation_mode='anchor') rc('font',**font) ax.set_ylabel('Total time [s]', fontsize=10) ax.set_xlabel('Number of elements', fontsize=10) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95)
rcParams['font.size'] = '10' # open the result file result = open(sys.argv[1]) # set up data N, t = numpy.loadtxt(result, dtype=float, unpack=True) # set up plot fig = pyplot.figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) # plot log-log ax.loglog(N,t,color='k',marker='o', ms=5, mfc='w') ax.loglog(N,N/20000,color='k', ls=':', ms=5, mfc='w') loc = (3*N[0]+N[1])/4 # text of plot tex_loc = numpy.array((loc,N[0]*t[0]/loc)) * 1.2 tex_angle = numpy.arctan2(numpy.log(abs(N[-1]/10000-N[0]/10000)),numpy.log(abs(N[-1]-N[0])))*180/numpy.pi ax.text(tex_loc[0], 6.5*tex_loc[1],r'$O(N)$',fontsize=10,rotation=tex_angle,rotation_mode='anchor') # axis labels ax.set_ylabel('Time (s)', fontsize=10) ax.set_xlabel('N', fontsize=10) fig.subplots_adjust(left=0.195, bottom=0.21, right=0.955, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('FMMScaling.pdf',dpi=80)
t_fixed = numpy.array([1.7921e+01, 6.6619e+01, 1.5039e+02, 2.4847e+02, 3.3733e+02, 4.2533e+02, 5.0892e+02, 5.6729e+02]) res = numpy.array([2.64378e-02, 2.31630e-02, 2.47985e-02, 2.00446e-02, 2.27640e-02, 2.30615e-02, 2.30037e-02, 2.30257e-02]) speedup = t_fixed / t_relax print(t_relax, t_fixed) print(speedup) # set up plot fig = pyplot.figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) # plot log-log ax.plot(tol,speedup,c='k',marker='o', ls='-', mfc='w', ms=5, label='') # axis labels #pyplot.xlim(5, 50) #pyplot.ylim(1, 4) ax.set_ylabel('Speedup', fontsize=10) ax.set_xlabel('tolerance', fontsize=10) ax.set_xscale('log') pyplot.axhline(y=1.0, linestyle='dashed', color='k') pyplot.ylim(0,4) fig.subplots_adjust(left=0.195, bottom=0.21, right=0.955, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('StokesSpeedupTolerance.pdf',dpi=80)
def save(self, fname=None, sigma_clip=None): r"""Saves the most recently rendered image of the Scene to disk. Once you have created a scene and rendered that scene to an image array, this saves that image array to disk with an optional filename. If an image has not yet been rendered for the current scene object, it forces one and writes it out. Parameters ---------- fname: string, optional If specified, save the rendering as to the file "fname". If unspecified, it creates a default based on the dataset filename. The file format is inferred from the filename's suffix. Supported fomats are png, pdf, eps, and ps. Default: None sigma_clip: float, optional Image values greater than this number times the standard deviation plus the mean of the image will be clipped before saving. Useful for enhancing images as it gets rid of rare high pixel values. Default: None floor(vals > std_dev*sigma_clip + mean) Returns ------- Nothing Examples -------- >>> import yt >>> ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030') >>> >>> sc = yt.create_scene(ds) >>> # Modify camera, sources, etc... >>> sc.render() >>> sc.save('test.png', sigma_clip=4) Or alternatively: >>> import yt >>> ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030') >>> >>> sc = yt.create_scene(ds) >>> # save with different sigma clipping values >>> sc.save('raw.png') >>> sc.save('clipped_2.png', sigma_clip=2) >>> sc.save('clipped_4.png', sigma_clip=4) """ if fname is None: sources = list(itervalues(self.sources)) rensources = [s for s in sources if isinstance(s, RenderSource)] # if a volume source present, use its affiliated ds for fname if len(rensources) > 0: rs = rensources[0] basename = rs.data_source.ds.basename if isinstance(rs.field, string_types): field = rs.field else: field = rs.field[-1] fname = "%s_Render_%s.png" % (basename, field) # if no volume source present, use a default filename else: fname = "Render_opaque.png" suffix = get_image_suffix(fname) if suffix == '': suffix = '.png' fname = '%s%s' % (fname, suffix) self.render() mylog.info("Saving render %s", fname) # We can render pngs natively but for other formats we defer to # matplotlib. if suffix == '.png': self._last_render.write_png(fname, sigma_clip=sigma_clip) else: from matplotlib.figure import Figure from matplotlib.backends.backend_pdf import \ FigureCanvasPdf from matplotlib.backends.backend_ps import \ FigureCanvasPS shape = self._last_render.shape fig = Figure((shape[0] / 100., shape[1] / 100.)) if suffix == '.pdf': canvas = FigureCanvasPdf(fig) elif suffix in ('.eps', '.ps'): canvas = FigureCanvasPS(fig) else: raise NotImplementedError( "Unknown file suffix '{}'".format(suffix)) ax = fig.add_axes([0, 0, 1, 1]) ax.set_axis_off() out = self._last_render nz = out[:, :, :3][out[:, :, :3].nonzero()] max_val = nz.mean() + sigma_clip * nz.std() alpha = 255 * out[:, :, 3].astype('uint8') out = np.clip(out[:, :, :3] / max_val, 0.0, 1.0) * 255 out = np.concatenate([out.astype('uint8'), alpha[..., None]], axis=-1) # not sure why we need rot90, but this makes the orientation # match the png writer ax.imshow(np.rot90(out), origin='lower') canvas.print_figure(fname, dpi=100)
speedup = time[::2] / time[1::2] speedup_1st = speedup[:len(speedup)//2] speedup_2nd = speedup[len(speedup)//2:] print(speedup_1st, speedup_2nd) # values in table # set up plot ind = numpy.arange(len(speedup)/2) width = 0.35 fig = pyplot.figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) # plot log-log bar1 = ax.bar(ind, speedup_1st, width, fill=False, edgecolor='k', hatch='..'*2, linewidth=1) bar2 = ax.bar(ind+width, speedup_2nd, width, fill=False, edgecolor='k', hatch='/'*3, linewidth=1) # axis labels ax.set_ylabel('Speedup', fontsize=10) ax.set_xlabel('$N$', fontsize=10) ax.set_xticks(ind+width) ax.set_xticklabels( ('8192','32768','131072') ) ax.legend((bar1[0], bar2[0]), ('1st-kind', '2nd-kind'), loc='upper left', fontsize='small') fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('LaplaceSpeedupRelaxation.pdf',dpi=80)
r = array([ 1.016e-02, 2.123e-03, 6.290e-04, 2.550e-04, 1.638e-04, 1.247e-04, 8.260e-05, 7.000e-05, 4.220e-05, 2.883e-05, 2.372e-05, 1.888e-05, 1.394e-05, 1.168e-05, 9.4244e-06 ]) it = size(p) ind = arange(it) # set up plot font = {'family': 'serif', 'size': 10} fig = Figure(figsize=(3.7, 2), dpi=80) ax = fig.add_subplot(111) # plot log-log ax.semilogy(ind, r, c='k', marker='', ls='-', mfc='w', ms=5, label='') rc('font', **font) ax2 = ax.twinx() ax2.plot(ind, p, c='k', marker='o', ls=':', mfc='w', ms=5, label='') # axis labels ax.set_ylabel('Residual', fontsize=10) ax.set_xlabel('Iterations', fontsize=10) ax2.set_ylabel('p', fontsize=10) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('LaplaceResidualIterations.pdf', dpi=80)
N = array([128, 512, 2048, 8192, 32768, 131072]) e = array([1.84e-1, 9.27e-2, 4.61e-2, 2.41e-2, 1.14e-2, 5.80e-3]) line_sqrtN = 1 / np.sqrt(N) # set up plot font = {'family':'serif','size':10} fig = Figure(figsize=(3,2), dpi=80) ax = fig.add_subplot(111) # plot log-log ax.loglog(N,e,c='k',marker='o', ls='-', mfc='w', ms=5, label='') ax.loglog(N,line_sqrtN,c='k',ls='--', mfc='w', ms=5, label='') rc('font',**font) loc = (3*N[0]+N[1])/4 # text on plot # 1 / sqrt(N) tex_loc = np.array((loc,N[0]*e[0]/loc)) tex_angle = math.atan2(np.log(np.abs(line_sqrtN[-1]-line_sqrtN[0])),np.log(np.abs(N[-1]-N[0])))*180/math.pi ax.text(tex_loc[0], tex_loc[1]/3.5,r'$O(1/\sqrt{N})$',fontsize=8,rotation=tex_angle-10,rotation_mode='anchor') # axis labels ax.set_ylabel('Relative Error', fontsize=10) ax.set_xlabel('N', fontsize=10) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('StokesConvergence.pdf',dpi=80)
mfc='w', ms=5, label='non-relaxed, tight parameters') ax2.loglog(N[-3:], e2_fixed, c='k', ls='-', lw=0.5, marker='+', ms=5, label='non-relaxed, loose parameters') ax2.loglog(N[-3:], e2_relaxed, c='k', ls='-', lw=0.5, marker='x', ms=5, label='relaxed, loose parameters') ax2.set_xlabel('$N$', fontsize=10) ax2.legend(loc=1, fontsize=6.5) ax2.set_yticklabels([]) ax2.grid('on') ax2.set_title('2nd-kind', fontsize=10) fig.subplots_adjust(left=0.15, bottom=0.15, right=0.87, top=0.92) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('LaplaceConvergence.pdf', dpi=80)
speedup = data_fixed / data_relax print speedup ind = arange(N) width = 0.3 # set up plot font = {'family':'serif','size':10} fig = Figure(figsize=(4,3), dpi=80) ax = fig.add_subplot(111) # plot log-log bar1 = ax.bar(ind, speedup[:,0], width, color='r') bar2 = ax.bar(ind+width, speedup[:,1],width,color='b') bar3 = ax.bar(ind+2*width,speedup[:,2],width,color='g') # bar2 = ax.bar(ind+width, speedup_2nd, width, color='b') rc('font',**font) # axis labels ax.set_ylabel('Speedup', fontsize=10) ax.set_xlabel('N', fontsize=10) ax.set_xticks(ind+1.5*width) ax.set_xticklabels( ('2048','8192','32768','131072') ) ax.legend( (bar1[0], bar2[0], bar3[0]), ('2048 panels/cell', '8192 panels/cell', '32768 panels/cell'), loc=2 ) fig.subplots_adjust(left=0.185, bottom=0.21, right=0.965, top=0.95) canvas = FigureCanvasPdf(fig) # plot to pdf canvas.print_figure('EthrocyteMultipleCellSpeedup.pdf',dpi=80)