Exemple #1
0
    def _process(self, element, key=None):
        try:
            from matplotlib.contour import QuadContourSet
            from matplotlib.axes import Axes
            from matplotlib.figure import Figure
        except ImportError:
            raise ImportError("contours operation requires matplotlib.")
        extent = element.range(0) + element.range(1)[::-1]

        if type(element) is Raster:
            data = [np.flipud(element.data)]
        elif isinstance(element, Image):
            data = [np.flipud(element.dimension_values(2, flat=False))]
        elif isinstance(element, QuadMesh):
            data = (element.dimension_values(0, False),
                    element.dimension_values(1, False), element.data[2])

        if isinstance(self.p.levels, int):
            levels = self.p.levels + 2 if self.p.filled else self.p.levels + 3
            zmin, zmax = element.range(2)
            levels = np.linspace(zmin, zmax, levels)
        else:
            levels = self.p.levels

        xdim, ydim = element.dimensions('key', label=True)
        fig = Figure()
        ax = Axes(fig, [0, 0, 1, 1])
        contour_set = QuadContourSet(ax,
                                     *data,
                                     filled=self.p.filled,
                                     extent=extent,
                                     levels=levels)
        if self.p.filled:
            contour_type = Polygons
        else:
            contour_type = Contours
        vdims = element.vdims[:1]

        paths = []
        empty = np.full((1, 2), np.NaN)
        for level, cset in zip(contour_set.get_array(),
                               contour_set.collections):
            subpaths = []
            for path in cset.get_paths():
                if path.codes is None:
                    subpaths.append(path.vertices)
                else:
                    subpaths += np.split(path.vertices,
                                         np.where(path.codes == 1)[0][1:])
            subpath = np.concatenate(
                [p for sp in subpaths for p in (sp, empty)][:-1])
            paths.append({(xdim, ydim): subpath, element.vdims[0].name: level})
        contours = contour_type(paths,
                                label=element.label,
                                kdims=element.kdims,
                                vdims=vdims)
        if self.p.overlaid:
            contours = element * contours
        return contours
Exemple #2
0
def compute_and_plot_1(ax, alpha, theta, t7):
    #Calculate grid values
    N = 150
    kx = np.linspace(-np.pi, np.pi, N + 1)
    ky = np.linspace(-np.pi, np.pi, N + 1)
    KX, KY = np.meshgrid(kx, ky)

    CS1 = QuadContourSet(ax,
                         KY,
                         KX,
                         evals1(alpha, theta, t7),
                         levels=[-4, -3, -2, -1, -0.5, -0.25, 0],
                         cmap=pyl.get_cmap('Reds'),
                         filled=True)  # Plot Fermisurface

    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_xlabel("$k_ya$", fontsize=8)
    ax.set_ylabel("$k_xa$", fontsize=8)
    ax.set_title('Constant energy lines in 1.BZ', fontsize=6)
    rect = patches.Rectangle((-2.9, -0.5),
                             1.0,
                             1.0,
                             linewidth=1,
                             edgecolor='black',
                             facecolor='none')

    # Add the patch to the Axes
    ax.add_patch(rect)
Exemple #3
0
def compute_and_plot(ax, alpha):
    #Calculate grid values
    V, W = np.meshgrid(v, w)
    Z = (V**(beta)) * (W**(1 - beta))
    X = x_bar + a + b * Z
    U = alpha * np.log(V) + (1 - alpha) * np.log(X) - c * (W + V)

    CS = QuadContourSet(ax, V, W, U, 200)
Exemple #4
0
def compute_and_plot(ax, lamda):
    #Calculate grid values
    X, Y = np.meshgrid(x, y)
    E = np.sin(2 * np.pi * np.sqrt(X**2 + (Y - 1)**2) / lamda) + np.sin(
        2 * np.pi * np.sqrt(X**2 + (Y + 1)**2) / lamda)
    CS = QuadContourSet(ax, X, Y, E, 200)
    ax.set_xlabel("x (m)")
    ax.set_ylabel("y (m)")
Exemple #5
0
    def get_contours(self):
        from matplotlib.contour import QuadContourSet
        from matplotlib.axes import Axes
        from matplotlib.figure import Figure

        # Use method matplotlib
        fig = Figure()
        ax = Axes(fig, [0, 0, 1, 1])
        # Get extent
        if self.dic:
            extent=(self.x0_ppm, self.x1_ppm, self.y0_ppm, self.y1_ppm)
        else:
            extent=None
        # calculate contour levels
        cl = self.get_contour_levels()
        # Get contours
        contour_set = QuadContourSet(ax, self.data, filled=False, extent=extent, levels=cl)

        # To plot in bokeh
        xs = []
        ys = []
        intensity = []
        xt = []
        yt = []
        col = []
        text = []
        isolevelid = 0
        color_palettes = bp.viridis(len(cl))
        for level, isolevel in zip(cl, contour_set.collections):
            level_round = round(level, 2)
            #theiso = str(contour_set.get_array()[isolevelid])
            theiso = str(level_round)
            # Get colour
            #isocol = isolevel.get_color()[0]
            #thecol = 3 * [None]
            #for i in range(3):
            #    thecol[i] = int(255 * isocol[i])
            #thecol = '#%02x%02x%02x' % (thecol[0], thecol[1], thecol[2])
            thecol = color_palettes[isolevelid]

            for path in isolevel.get_paths():
                v = path.vertices
                x = v[:, 0]
                y = v[:, 1]
                xs.append(x.tolist())
                ys.append(y.tolist())
                intensity.append(level)
                xt.append(x[int(len(x) / 2)])
                yt.append(y[int(len(y) / 2)])
                text.append(theiso)
                col.append(thecol)
            # Add to counter
            isolevelid += 1
        cdata={'xs': xs, 'ys': ys, 'line_color': col, 'intensity': intensity}
        ctext={'xt':xt,'yt':yt,'text':text}
        return cdata, ctext
Exemple #6
0
def compute_and_plot_2(ax, alpha, theta, t7):
    #Calculate grid values
    N = 150
    kx = np.linspace(-np.pi, np.pi, N + 1)
    ky = np.linspace(-np.pi, np.pi, N + 1)
    KX, KY = np.meshgrid(kx, ky)
    E = evals2(alpha, theta, t7)

    CS2 = QuadContourSet(ax, KY, KX, E[:, :, 2],levels=[-1, -0.5, -0.25, -0.1, -0.01, 0], cmap=pyl.get_cmap('Reds'))# Plot Fermisurface

    pyl.clabel(CS2, inline=1, fontsize=5)
    ax.set_xlabel("$k_ya$", fontsize=8)
    ax.set_ylabel("$k_xa$", fontsize=8)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_title('Constant energy lines around K point', fontsize=6)
    def _process(self, element, key=None):
        try:
            from matplotlib.contour import QuadContourSet
            from matplotlib.axes import Axes
            from matplotlib.figure import Figure
            from matplotlib.dates import num2date, date2num
        except ImportError:
            raise ImportError("contours operation requires matplotlib.")
        extent = element.range(0) + element.range(1)[::-1]

        xs = element.dimension_values(0, True, flat=False)
        ys = element.dimension_values(1, True, flat=False)
        zs = element.dimension_values(2, flat=False)

        # Ensure that coordinate arrays specify bin centers
        if xs.shape[0] != zs.shape[0]:
            xs = xs[:-1] + np.diff(xs, axis=0)/2.
        if xs.shape[1] != zs.shape[1]:
            xs = xs[:, :-1] + (np.diff(xs, axis=1)/2.)
        if ys.shape[0] != zs.shape[0]:
            ys = ys[:-1] + np.diff(ys, axis=0)/2.
        if ys.shape[1] != zs.shape[1]:
            ys = ys[:, :-1] + (np.diff(ys, axis=1)/2.)
        data = (xs, ys, zs)

        # if any data is a datetime, transform to matplotlib's numerical format
        data_is_datetime = tuple(isdatetime(arr) for k, arr in enumerate(data))
        if any(data_is_datetime):
            data = tuple(
                date2num(d) if is_datetime else d
                for d, is_datetime in zip(data, data_is_datetime)
            )

        xdim, ydim = element.dimensions('key', label=True)
        if self.p.filled:
            contour_type = Polygons
        else:
            contour_type = Contours
        vdims = element.vdims[:1]

        kwargs = {}
        levels = self.p.levels
        zmin, zmax = element.range(2)
        if isinstance(self.p.levels, int):
            if zmin == zmax:
                contours = contour_type([], [xdim, ydim], vdims)
                return (element * contours) if self.p.overlaid else contours
            data += (levels,)
        else:
            kwargs = {'levels': levels}

        fig = Figure()
        ax = Axes(fig, [0, 0, 1, 1])
        contour_set = QuadContourSet(ax, *data, filled=self.p.filled,
                                     extent=extent, **kwargs)
        levels = np.array(contour_set.get_array())
        crange = levels.min(), levels.max()
        if self.p.filled:
            levels = levels[:-1] + np.diff(levels)/2.
            vdims = [vdims[0].clone(range=crange)]

        paths = []
        empty = np.array([[np.nan, np.nan]])
        for level, cset in zip(levels, contour_set.collections):
            exteriors = []
            interiors = []
            for geom in cset.get_paths():
                interior = []
                polys = geom.to_polygons(closed_only=False)
                for ncp, cp in enumerate(polys):
                    if any(data_is_datetime[0:2]):
                        # transform x/y coordinates back to datetimes
                        xs, ys = np.split(cp, 2, axis=1)
                        if data_is_datetime[0]:
                            xs = np.array(num2date(xs))
                        if data_is_datetime[1]:
                            ys = np.array(num2date(ys))
                        cp = np.concatenate((xs, ys), axis=1)
                    if ncp == 0:
                        exteriors.append(cp)
                        exteriors.append(empty)
                    else:
                        interior.append(cp)
                if len(polys):
                    interiors.append(interior)
            if not exteriors:
                continue
            geom = {
                element.vdims[0].name:
                num2date(level) if data_is_datetime[2] else level,
                (xdim, ydim): np.concatenate(exteriors[:-1])
            }
            if self.p.filled and interiors:
                geom['holes'] = interiors
            paths.append(geom)
        contours = contour_type(paths, label=element.label, kdims=element.kdims, vdims=vdims)
        if self.p.overlaid:
            contours = element * contours
        return contours
Exemple #8
0
    def _process(self, element, key=None):
        try:
            from matplotlib.contour import QuadContourSet
            from matplotlib.axes import Axes
            from matplotlib.figure import Figure
        except ImportError:
            raise ImportError("contours operation requires matplotlib.")
        extent = element.range(0) + element.range(1)[::-1]

        xs = element.dimension_values(0, True, flat=False)
        ys = element.dimension_values(1, True, flat=False)
        zs = element.dimension_values(2, flat=False)

        # Ensure that coordinate arrays specify bin centers
        if xs.shape[0] != zs.shape[0]:
            xs = xs[:-1] + np.diff(xs, axis=0)/2.
        if xs.shape[1] != zs.shape[1]:
            xs = xs[:, :-1] + (np.diff(xs, axis=1)/2.)
        if ys.shape[0] != zs.shape[0]:
            ys = ys[:-1] + np.diff(ys, axis=0)/2.
        if ys.shape[1] != zs.shape[1]:
            ys = ys[:, :-1] + (np.diff(ys, axis=1)/2.)
        data = (xs, ys, zs)

        xdim, ydim = element.dimensions('key', label=True)
        if self.p.filled:
            contour_type = Polygons
        else:
            contour_type = Contours
        vdims = element.vdims[:1]

        kwargs = {}
        levels = self.p.levels
        zmin, zmax = element.range(2)
        if isinstance(self.p.levels, int):
            if zmin == zmax:
                contours = contour_type([], [xdim, ydim], vdims)
                return (element * contours) if self.p.overlaid else contours
            data += (levels,)
        else:
            kwargs = {'levels': levels}

        fig = Figure()
        ax = Axes(fig, [0, 0, 1, 1])
        contour_set = QuadContourSet(ax, *data, filled=self.p.filled,
                                     extent=extent, **kwargs)
        levels = np.array(contour_set.get_array())
        crange = levels.min(), levels.max()
        if self.p.filled:
            levels = levels[:-1] + np.diff(levels)/2.
            vdims = [vdims[0].clone(range=crange)]

        paths = []
        empty = np.array([[np.nan, np.nan]])
        for level, cset in zip(levels, contour_set.collections):
            exteriors = []
            interiors = []
            for geom in cset.get_paths():
                interior = []
                polys = geom.to_polygons(closed_only=False)
                for ncp, cp in enumerate(polys):
                    if ncp == 0:
                        exteriors.append(cp)
                        exteriors.append(empty)
                    else:
                        interior.append(cp)
                if len(polys):
                    interiors.append(interior)
            if not exteriors:
                continue
            geom = {element.vdims[0].name: level, (xdim, ydim): np.concatenate(exteriors[:-1])}
            if self.p.filled and interiors:
                geom['holes'] = interiors
            paths.append(geom)
        contours = contour_type(paths, label=element.label, kdims=element.kdims, vdims=vdims)
        if self.p.overlaid:
            contours = element * contours
        return contours
Exemple #9
0
from matplotlib.widgets import Slider

#Define display parameters
mpl.rcParams['xtick.direction'] = 'out'
mpl.rcParams['ytick.direction'] = 'out'
delta = 0.025

#Define model parameters
alpha = .5
beta = .5
x_bar, a, b, c = 2, 0, 1, .1
v = np.arange(0, 10, delta)
w = np.arange(0, 10, delta)

#Calculate grid values
V, W = np.meshgrid(v, w)
Z = (V**(beta)) * (W**(1 - beta))
X = x_bar + a + b * Z
U = alpha * np.log(V) + (1 - alpha) * np.log(X) - c * (W + V)

# Plot
fig = pyl.figure()

ax = fig.add_subplot(221)
CS = QuadContourSet(pyl.gca(), V, W, U, 200)
pyl.clabel(CS, inline=1, fontsize=10)
pyl.title('Simplest default with labels')

pyl.plot()
pyl.show(block=True)